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Determining how genetic variance changes under selection in natural populations has proved to be a
very resilient problem in evolutionary genetics. In the same way that understanding the availability of
genetic variance within populations requires the simultaneous consideration of genetic variance in
sets of functionally related traits, determining how genetic variance changes under selection in natural
populations will require ascertaining how genetic variance–covariance (G) matrices evolve. Here, we
develop a geometric framework using higher-order tensors, which enables the empirical
characterization of how G matrices have diverged among populations. We then show how divergence
among populations in genetic covariance structure can then be associated with divergence in
selection acting on those traits using key equations from evolutionary theory. Using estimates of
G matrices of eight male sexually selected traits from nine geographical populations of Drosophila
serrata, we show that much of the divergence in genetic variance occurred in a single trait
combination, a conclusion that could not have been reached by examining variation among the
individual elements of the nine G matrices. Divergence in G was primarily in the direction of
the major axes of genetic variance within populations, suggesting that genetic drift may be a major
cause of divergence in genetic variance among these populations.
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1. INTRODUCTION
The effect of selection on the genetic variance in natural

populations is central to several key questions at

the interface between ecology and evolution. At a

geographical scale, one explanation for the presence

of restricted species ranges invokes the exhaustion of

genetic variance in traits under selection in marginal

habitats (Hoffmann & Blows 1994). Within popu-

lations, life-history trade-offs ultimately must be

manifested as a lack of genetic variation in trait

combinations involving different components of fitness

(Lande 1982). In behavioural ecology, the maintenance

of female preference under good genes models of sexual

selection is critically dependent on the maintenance of

genetic variance in male traits, and associated fitness

benefits (Rowe & Houle 1996; Kirkpatrick & Barton

1997). The dynamics of genetic variance under

selection is therefore associated with attempts to

explain some of the most basic ecological observations

concerning the distribution of species, and the life

history and behaviour of individuals within populations.

How genetic variance changes under selection is a

question that has vexed evolutionary genetics for the past

30 years (Lande 1979; Turelli 1985; Barton & Turelli
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1987; Johnson & Barton 2005). Genetic variance in
natural populations appears ubiquitous (Lynch & Walsh

1998), and yet it is maintained in the presence of strong
directional and stabilizing selection (Kingsolver et al.
2001) that is expected to deplete it. Compounding this

seemingly contradictory situation is the presence of high
levels of genetic variance in life-history traits closely
associated with fitness (Houle 1992), when genetic

variance for fitness itself is predicted to be low under
Fisher’s fundamental theorem of natural selection.
Although there are plausible mechanisms that may

account for the maintenance of so much genetic variance
(Turelli & Barton 2004; Burger 2005), it is hard to
escape the conclusion that we have yet to come to an

empirical understanding of the most basic aspects of how
selection affects genetic variance in natural populations.

Evidence for how selection changes genetic variance

is difficult to obtain, given that quantitative genetic
designs usually need to be applied in more than one
population to address this question (Agrawal et al.
2001). Responses to selection in artificial selection
experiments for unidirectional increases in trait values
have plateaued in some cases, suggesting a depletion of

genetic variance (Hill & Caballero 1992; Blows &
Hoffmann 2005). Mixed-model approaches to the
analysis of selection experiments, in which pedigrees
are known throughout the experiment, hold consider-

able promise for directly assessing changes in genetic
variance during selection. However, these approaches
have been applied in a few cases (Meyer & Hill 1991;
This journal is q 2009 The Royal Society
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Beniwal et al. 1992a,b; Heath et al. 1995), and
analytical problems concerning the estimation of
genetic variances in each generation of selection remain
unresolved (Walsh & Lynch 1999).

Empirical investigations of spatial structure in genetic
variances of traits under natural selection, such as the
change in genetic variance along clines, are surprisingly
rare (Barton 1999), particularly given the enormous
number of studies devoted to assessing variation among
populations in neutral markers. Clinal patterns in
realized heritability (Blows & Hoffmann 1993), and
temporal changes in genetic variance (Merila et al.
2001), suggest that selection may decrease genetic
variance in some cases. However, selection may also
increase genetic variance, as found in a natural selection
experiment that replicated an increase in genetic
variance in response to reinforcing natural selection
found in field populations (Blows & Higgie 2003). This
last example highlights the complexity of the problem;
selection can either increase genetic variance (e.g. if
favoured alleles segregate at low frequency in the starting
population) or deplete it, depending on the underlying
genetic details of the response to selection (Barton &
Turelli 1987; Barton 1999).

One important factor contributing to our inability to
find associations between selection and genetic variance
in natural populations is likely to have been an empirical
reliance on univariate measures of both selection and
genetic variance (Blows & Hoffmann 2005; Johnson &
Barton 2005; Blows 2007). It can be readily shown that
univariate measures of these microevolutionary param-
eters can seriously mislead when traits are genetically
correlated or experience correlational selection (Pease &
Bull 1988; Walsh 2007). The extent to which we have
been misled concerning the ubiquity of genetic variance
is the subject of recent efforts to determine the
dimensionality of genetic variance–covariance (G)
matrices (Mezey & Houle 2005; Hine & Blows 2006;
McGuigan & Blows 2007), and generally it seems likely
that a number of trait combinations (dimensions)
comprising a particular G matrix may lack detectable
levels of genetic variance (Kirkpatrick 2008).

If we are to therefore understand how selection
changes genetic variance in natural populations, we
need not only to know what traits are under selection,
but also to assess levels of genetic variance in a
multivariate context. For example, multivariate
approaches to associating either the direction of linear
(Blows et al. 2004; Hine et al. 2004; Van Homrigh et al.
2007) or stabilizing sexual selection (Hunt et al. 2007)
to G matrix orientation have suggested that persistent
sexual selection at least may be very effective at
depleting genetic variance. One limitation of such
studies, however, is that they draw associations
between the direction of selection and the orientation
of genetic variance within a single population, and do
not attempt to explain naturally occurring differences
in genetic variance among populations.

Given the dependency of the change in genetic
variance under selection on generally unknown
genetic details (Barton & Turelli 1987), theoretical
investigations of how G matrices evolve under genetic
drift and selection have tended to take a simulation
approach to the evolution of G (Reeve 2000; Jones
Phil. Trans. R. Soc. B (2009)
et al. 2003, 2004, 2007). Much of the statistical focus
on G matrix evolution has been directed at determining
whether two such matrices display significant
differences. Such approaches are designed to test
specific aspects of matrix similarity by using vector
forms (Roff 2000), a hierarchy of subspace and
proportionality hypotheses (Phillips & Arnold 1999)
or random projections (Cheverud & Marroig 2007).
While further development of such hypothesis testing
frameworks is badly needed (Steppan et al. 2002), we
lack a robust framework that allows the variation in
multiple G matrices to be simultaneously charac-
terized. For example, in what trait combination has
genetic variance diverged most among populations for
a given set of traits? Can we identify independent
components of divergence in genetic variance, which
may have different underlying genetic causes, such as
might be expected if different loci contribute to
adaptive responses at different positions along clines
(Barton 1999)? To address such questions, we advocate
that a geometric understanding of how multiple
G matrices vary is required to fully characterize
among-population heterogeneity in patterns of genetic
variance–covariance.

In this paper, we develop a tensor-based approach to
the characterization of variation among populations in
G matrices, which captures all the variance among
populations in genetic covariance by maintaining the
geometric integrity of the individual G matrices.
Multiple G matrices can be considered as random
second-order tensor variables, the variation among
which can be characterized by a fourth-order genetic
covariance tensor, SG. We show how divergence among
populations in genetic covariance structure in tensor
form can be decomposed into independent com-
ponents of divergence in genetic variance, which
constitute the eigentensors of SG. Crucially, expression
of the variation among G matrices in tensor form allows
divergence in genetic variance among populations to be
naturally associated with divergence in selection acting
on those traits using key equations from evolutionary
theory (Lande & Arnold 1983; Zeng 1988). We
illustrate our approach using estimates of G matrices
and the individual fitness surfaces for male sexually
selected contact pheromones (cuticular hydrocarbons
or CHCs) from nine geographical populations of
Drosophila serrata sampled along a latitudinal cline
along the Australian east coast.
2. MATERIAL AND METHODS
(a) Tensors as a framework for characterizing

divergence in G matrices

In asking questions about how either fitness surfaces (Arnold

et al. 2001; Rundle et al. 2008) or G matrices (Roff 2000;

Blows & Higgie 2003) vary among natural populations, we

are addressing questions in which the data are now second-

order random variables: second-order response surfaces in

the case of individual fitness surfaces and second-order

covariance matrices in the case of G matrices. Tensors from

multilinear algebra extend the notion of vectors (first-order

tensors) and matrices (second-order tensors) to higher-

order structures that can be used to characterize variation in

these lower-order variables. Although tensors have had limited

application in evolutionary biology (Rice 2002, 2004), they

http://rstb.royalsocietypublishing.org/


Table 1. Glossary of tensor notation illustrated using the genetic covariance tensor SG.

G genetic variance–covariance matrix (second order, n!n)
Gxy element of a G matrix
tr(G) trace of a G matrix
Gw average within-population G matrix
SG covariance tensor of G matrices (fourth order, n!n!n!n)
SG:xy,wz element of a SG tensor
S matrix representation of SG

3k k th eigenvector of S

Ek
G

k th eigentensor of SG (second order, n!n)

skG k th eigenvalue of SG

nk;iG
ith eigenvector of the k th eigentensor of SG

ek;iG
ith eigenvalue of the k th eigentensor of SG

C j,k coordinate of the k th eigentensor for the jth population G

Figure 1. Second-order tensor representation (S) of a fourth-order covariance tensor (S) for n traits. The symmetrical matrix S

comprises four parts: the upper left-hand section contains the variances of genetic variances along the diagonal, and the
covariances of genetic variances off the diagonal; the upper right-hand and lower left-hand sections contain the covariances of
genetic variances and covariances; and the lower right-hand section contains the variances of genetic covariances along the
diagonal, and the covariances of genetic covariances off the diagonal. Here, Sab,ab represents the variance of the covariance
between ath and bth traits (1%a!b%n).
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are likely to become increasingly important in evolutionary

genomics (Alter & Golub 2005; Omberg et al. 2007). Here, we

adapt techniques for the singular value decomposition of

fourth-order tensors (Basser & Pajevic 2007), which allow the

characterization of variation in random second-order tensor

variables such as G matrices.

To begin with, consider the second-order tensor, the G

matrix that summarizes the variances and covariances

among a set of traits within a single population. Each

element of G is denoted by two indices (table 1), e.g. Gxy is

the genetic covariance between traits x and y. Similarly,

when there is more than one population, to summarize the

variances and covariances among the set of G matrices, we

require a fourth-order covariance tensor, SG. The tensor

must be fourth order because covariances of covariances are

denoted by four indices, e.g. SG:xy,wz is the covariance

between Gxy and Gwz.

In practice, we can represent the fourth-order covariance

tensor as a covariance matrix (S) of dimension n(nC1)/2,

which is the number of unique elements in a G matrix for n

traits. Figure 1 shows how to map the elements of SG to S,

dividing the matrix into four quadrants. The top left quadrant

contains variances of variances along the diagonal and

covariances of variance pairs in the off-diagonal elements.

The bottom right quadrant contains variances of covariances

along the diagonal and covariances of covariance pairs on the

off-diagonal, each multiplied by two. The last two quadrants

are mirror images containing the covariances between

covariance and variance elements of the original G matrices,

each multiplied by O2. The scaling factors 2 and O2 are
Phil. Trans. R. Soc. B (2009)
necessary to map the appropriate number of occurrences of

the various terms in the higher-order SG to the lower-order S

(Basser & Pajevic 2007).

It has long been appreciated that G matrices could be

decomposed into a set of eigenvalues and eigenvectors, where

each eigenvector represents a linear combination of traits that

contains variance independent of the variance in any other

eigenvector (Dickerson 1955; Hill & Thompson 1978; Lande

1979; Pease & Bull 1988). Similarly, SG can be decomposed

into a set of eigenvalues and second-order eigentensors. The

n(nC1)/2 eigenvalues of SG, s k
G are equal to the eigenvalues

of its representative S matrix (Basser & Pajevic 2007).

The n(nC1)/2 elements of the k th eigenvector of S:

3
k Z 3

k
1;1; 3

k
2;2; .; 3kn;n; 3

k
1;2; .; 3k1;n; .; 3ka;b; .; 3knK1;n

� �
;

ð2:1Þ

where 1%a!b%n, can be rearranged to form an n!n matrix

to give the k th eigentensor of SG,

Ek
G Z

3k1;1
1ffiffiffi
2

p 3k1;2 /
1ffiffiffi
2

p 3k1;n

1ffiffiffi
2

p 3k2;1 3k2;2 /
1ffiffiffi
2

p 3k2;n

« « 1 «

1ffiffiffi
2

p 3kn;1
1ffiffiffi
2

p 3kn;2 / 3kn;n

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; ð2:2Þ
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where, for example, skG3
k
1;1

2
and 2skG3

k
1;2

2
return the variance

among the G matrices in the genetic variance G11 and the

variance in the genetic covariance G12, respectively, which are

explained by the k th eigenvector of S. Since the variances and

covariances forming S are calculated directly, S will be a

positive semi-definite matrix, i.e. all its eigenvalues will be

greater than or equal to zero. By contrast, G will often have

negative eigenvalues due to sampling error as a result of the

estimation process (Hill & Thompson 1978). The maximum

number of non-zero eigenvalues possible for SG is the

smallest of pK1 and n(nC1)/2, where p is the number of G

matrices, from different geographical populations, for

example, included in the analysis.

The eigentensors arranged in the form of (2.2) represent

mutually orthogonal aspects of how the original G matrices

have diverged and can be interpreted in a fashion similar to

the original G matrices. Depending on the sampling design

from which the original G matrices were taken, the

eigentensors of SG have the potential to have a number of

interesting biological interpretations. For example, the

change in genetic variance represented by different eigen-

tensors might represent different sources of selection acting

on the original traits in natural populations. Alternatively, if

the G matrices have been sampled along a latitudinal cline, it

is possible that different eigentensors might represent allelic

clines at different loci that respond to selection at different

positions along the cline (Barton 1999).

Each eigentensor itself can be subjected to a spectral

decomposition to determine its eigenvectors ðnk;i
G Þ and

eigenvalues ðek;iG Þ. Therefore, within the space of independent

change in genetic variance among the constituent G matrices

represented by an eigentensor, the eigenvectors describe

genetically independent linear combinations of traits that

have experienced a change in genetic variance. Although

eigenvectors within an eigentensor are linearly independent,

the changes in genetic variance in trait combinations they

represent are not independent of each other. For example, if

an eigentensor has a number of eigenvalues of substantial size,

the independent change in the pattern of genetic covariance

represented by this eigentensor is spread across a number of

genetically independent trait combinations.

Alternatively, if the leading eigenvector of an eigentensor

has a substantially larger eigenvalue than the remaining

eigenvectors, this would suggest that the independent change

in the pattern of genetic covariance represented by this

eigentensor is explained primarily by a change in genetic

variance in a single trait combination.

To this point, we have characterized how a set of G

matrices vary using the genetic covariance tensor represented

by S. It may then be desirable to determine the level of genetic

variance in each population for the trait combinations that

vary the most in genetic variance among populations. For

example, it may be of interest to determine how genetic

variance changes along a geographical cline (Barton 1999) in

a set of functionally related traits. The analysis of such cases

would be greatly facilitated by concentrating on the major

independent aspects of divergence in genetic variance, rather

than individual trait genetic variances.

In the simple situation of a single G matrix, characterizing

the genetic variance in a given trait combination ( y) is

achieved by projecting y through the G matrix using yTGy.

The principle of linear projection can also be applied to

determining the level of genetic variance within each

population for those trait combinations that have diverged

among populations to the greatest extent. However, there is a

complication in using linear projections with SG, because it is
Phil. Trans. R. Soc. B (2009)
possible that the divergence in genetic variance in a given

combination of traits could be the result of multiple

independent changes in the pattern of genetic covariance,

which are accounted for by different eigentensors.

To understand how populations vary in relation to one

particular independent change in genetic variance, it is

necessary to partition the genetic variance within each

population into parts associated with each eigentensor of

SG. To this end, the jth population G matrix can be expressed

as a linear combination of the n(nC1)/2 eigentensors of SG,

Gj Z
X
k

C j;kEk
G; ð2:3Þ

where Cj,k are the coordinates of Gj in the basis of the

eigentensors of SG, and can be calculated as the Frobenius

inner product (the sum of the element-wise products, yielding

a scalar) of Ek
G and Gj. Since the Ek

G describe ways in which a

set of G matrices differ, similar values of a given Cj,k for any

pair of G matrices would suggest that the two matrices do not

differ from each other in the way described by the particular

Ek
G under consideration. Another way to view the Cj,k values

is that their squared values represent proportions of the

squared length of Gj ðkGk2
F Þ in the space of the n!n G

matrices. Therefore, for an individual G matrix, Gj, Cj,k

indicates how much genetic variance, combined across all

traits, is involved in the change captured by the k th

eigentensor. To determine the change in genetic variance

for a particular trait combination that results from an

eigentensor, a final step then is to apply the projection,

V
j;k

A ðyÞZ yC j;kEk
G y

T; ð2:4Þ

which gives the genetic variance for any given trait

combination (y) in the jth population that has been captured

by the k th eigentensor. If the trait combination represented

by y is an eigenvector of Ek
G, this value is equal to C j;kek;iG .
(b) Associating variation in selection with divergence

in G matrices

The variation among populations in linear selection can be

characterized by the covariance matrix among linear selection

gradients (Felsenstein 1988; Zeng 1988) as

BZ

var ðb1Þ covðb1; b2Þ . covðb1; bnÞ

covðb1; b2Þ var ðb2Þ . covðb2; bnÞ

« « 1 «

covðb1; bnÞ covðb2; bnÞ . varðbnÞ

0
BBBB@

1
CCCCA; ð2:5Þ

where the diagonal elements represent the variance among

populations of the directional selection gradients (b) acting

on the nth trait, and the off-diagonal elements represent the

covariance of directional selection gradients among popu-

lations for pairs of traits. The principle of linear projection

can be applied to the association between variation in

selection among populations and the orientation of SG.

In this case, however, rather than projecting a first-order

tensor (e.g. the trait combination y) onto a second-order

covariance tensor (e.g. Cj;kEk
G), a second-order covariance

tensor (B) describing the variation among populations in

linear selection is projected onto the fourth-order SG.

The variance among G matrices that can be explained by

variance among bs is equal to the length of B in the space

of SG. The Frobenius normalized B, hereafter denoted as B 0

(or B0
ij for an individual element of B 0), is calculated as:

B0
ij Z

BijffiffiffiffiffiffiffiffiffiffiffiffiP
i; j

B2
ij

r ; ð2:6Þ
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Table 2. Projections of the vector of linear selection (b)
through the genetic variance–covariance matrix (G) for each
of nine geographical populations of D. serrata.

population VA percentage of tr(G)

1 0.2886 3.2
2 0.1278 2.3
3 0.2079 7.5
4 0.2701 11.7
5 0.3759 15.6
6 0.0430 0.7
7 0.0172 0.4
8 0.0186 0.8
9 0.0516 1.4
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which is then projected through SG (Basser & Pajevic 2007,

eqn (26)),

B0 : SG : B0; ð2:7Þ

where : represents the Frobenius inner product. In practice,

this can be implemented by employing only scalar and vector

values using (Basser & Pajevic 2007, eqn (29))

XðnðnC1ÞÞ=2

kZ1

sk

Xn
i; jZ1

lig
k
j hi$n

k
j

� �2

 !2

; ð2:8Þ

where li is the ith eigenvalue of B 0; gk
j is the jth eigenvalue of

the k th eigentensor of SG; hi is the ith eigenvector of B 0; nkj is

the jth eigenvector of the k th eigentensor of SG; and sk is the

k th eigenvalue of SG. Note that Basser & Pajevic (2007)

inconsistently defined sk to be the square root of the k th

eigenvalue of SG in the text preceding their eqn (11), but we

use the definition presented in their nomenclature table. The

projection value can be compared with the sum of

the eigenvalues of SG to quantify how much of the variation

among G matrices shares a subspace with (and may therefore

be attributed to) variation in linear selection.

(c) Predicting divergence in G matrices using

microevolutionary parameters

Just as the pattern of genetic covariance can have a substantial

impact on the response of population means to selection

(Lande 1979), it will also influence how G evolves. The

within-generation change in G, which is predicted to result

from a single generation of selection is given by (Lande &

Arnold 1983; Phillips & Arnold 1989)

DGZGðgKbb
TÞG; ð2:9Þ

where g is the matrix of second-order sexual selection

gradients and gKbbT is the curvature of the adaptive

landscape (Estes & Arnold 2007). The presence of G in

(2.9) indicates that the pattern of genetic covariance will bias

the direction of change in genetic covariance. For example, if

selection acts on a trait combination that has zero genetic

variance, genetic variance in this trait combination cannot

(mathematically) become non-zero due to selection alone. To

determine the potential impact of divergence in the predicted

response of G to selection, the variation among populations in

DG can also be characterized by the fourth-order tensor,

SDG. By applying (2.9) using an estimate of the ancestral G

matrix for the set of G matrices under consideration, the

predicted change in G generated by the specific selection

regimes, characterized in the estimates of g and b, may then

be compared with the observed changes in G. It should be

emphasized that this approach is based on the assumption

that the underlying distribution of allelic effects conforms to

Lande’s Gaussian model, which may not hold, particularly

when genetic variances are observed to change substantially

as a consequence of selection (Barton & Turelli 1987).
3. RESULTS
(a) Geographical variation in fitness surfaces

and G matrices

Nine geographical populations of D. serrata were
sampled over a 1450 km latitudinal range along the
east coast of Australia, and laboratory populations were
established (details in Chenoweth et al. 2008). The
nine populations in this paper are numbered in order
from north to south, where population 1 is the most
northerly population (Cooktown, fig. 1 in Chenoweth
et al. 2008). Sexual selection on male CHCs, arising
Phil. Trans. R. Soc. B (2009)
from female mate preferences in each population, was
characterized using standard two-stimulus mate choice
tests, where a single female chose between two males
(details in Rundle et al. 2008). Trait values from all
populations were first standardized to the grand mean
of the nine populations and a standard deviation of 1.
Choice of scale can have a substantial influence on
multivariate analyses (Hansen & Houle 2008). We
chose to standardize to the grand mean of all nine
populations because differences in population mean
were important to retain in analyses that used the major
axis of the variance–covariance matrix among popu-
lation means (Lande 1979) to help in interpretation of
the genetic covariance tensor. We chose to standardize
trait variances as large differences among individual
trait variances can cause convergence problems in the
estimation of G using restricted maximum likelihood.
Under this scale, no individual trait dominates the
eigenstructure of individual G matrices.

Sexual selection gradients for each population were
estimated using linear and quadratic regression
(Lande & Arnold 1983). Genetic covariance in male
CHCs was estimated from nine half-sib breeding
designs conducted within each population four gener-
ations after they were established in the laboratory
(details in Chenoweth et al. 2008; eigenstructure of
these nine G matrices is given in the electronic
supplementary material). We constrained each of the
population G matrices to be positive semi-definite by
applying a factor-analytic covariance structure at the
sire level, and fitting all eight possible dimensions
(Hine & Blows 2006).
(b) Orientation of the G matrix and linear

selection within multiple geographical

populations

Linear projections have been used in this system to
dissect the association between the direction of linear
selection and the orientation of a G matrix within a
population (Blows et al. 2004; Hine et al. 2004;
Van Homrigh et al. 2007). These analyses have
suggested that little genetic variance remains in the
direction of linear sexual selection. We determined
the generality of this association in D. serrata using the
nine replicate populations (table 2). In eight of nine
populations, the level of genetic variance in bj was less
than what would be expected if the G matrix
was spherical. On average, bj accounted for only

http://rstb.royalsocietypublishing.org/


Table 3. Eigenvalues of covariance tensors SG, SgKbbT and
SDG.

eigenvalue SG SDG

1 3.4928 0.6021
2 0.8464 0.1501
3 0.2320 0.0101
4 0.1600 0.0071
5 0.0960 0.0018
6 0.0736 0.0008
7 0.0384 0.0004
8 0.0160 0.0001
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4.9 per cent of the genetic variance (calculated as the
percentage of the trace of G, tr(G)), where it would be
expected to be 12.5 per cent if the distribution of
genetic variance was equal in all directions.

We conducted a randomization test to determine
whether the orientation of bj across the nine popu-
lations was associated with less genetic variance than
expected by chance. For each population, 1000
random normalized b vectors were constructed
using random selection gradients drawn from a
distribution that had the mean and variance of the 72
observed selection gradients from the nine populations.
Genetic variance in the direction of each random vector
was then determined by linear projection through Gi.
The average genetic variance in bj as a proportion of
tr(Gi), for each of 1000 sets of nine projections was
then calculated, and this distribution was compared
with the observed average genetic variance in bj. The
observed level of genetic variance in bj (4.9%) fell
between the first and second lowest estimates from the
1000 random estimates of the average genetic variance
in bj, corresponding to a two-tailed Pr-value of 0.002.
Therefore, the level of genetic variance in bj was
significantly lower than expected at random given the
observed orientation of the population G matrices.

(c) Divergence in G matrices characterized

by the genetic covariance tensor

The eight eigenvalues of the covariance tensor SG, for
which non-zero values were possible, differed substan-
tially in magnitude (table 3). The first eigentensor ðE1

GÞ

accounted for 70.5 per cent of the divergence among
the G matrices of the nine natural populations. This
suggests that there is a single independent pattern of
change in genetic covariance among the eight traits to
which most of the divergence in genetic covariance
among populations can be attributed. The second
eigentensor ðE2

GÞ accounted for a further 17.1 per cent
of the divergence in genetic variance (table 3).

E1
G (see table 10 in the electronic supplementary

material) was dominated by a single trait combination.
The dominant eigenvector ðn1;1

G Þ of E1
G had an

eigenvalue ðe1;1
G Þ of K0.977, the square of which

(0.95) represents the proportion of the squared length
of E1

G (equal to 1 because E1
G is normalized) that this

vector explains. Therefore, 95 per cent of the variance
represented by E1

G was explained by n1;1
G , indicating

that the pattern of change in genetic covariance among
populations represented by this eigentensor can be
ascribed to a change in genetic variance in a single
linear combination of the original traits. The loadings
of n1;1

G (table 4) are of the same sign for all CHCs,
a pattern that is indicative of the major axis of genetic
variance (gmax) within eight of the nine populations
(see the electronic supplementary material). By con-
trast, E2

G (see table 10 in the electronic supplementary
material) had two eigenvectors with eigenvalues of
substantial size and opposing signs. The first eigen-
vector ðn2;1

G Þ accounted for 53.9 per cent of the variance
represented by E2

G, and the second eigenvector n2;2
G

accounted for 40.9 per cent of the variance. Therefore,
the independent genetic change represented by E2

G

occurs mainly in two genetically independent trait
combinations; as genetic variance is increased in one
Phil. Trans. R. Soc. B (2009)
trait combination within a population, it is decreased in
the other trait combination.

The level of genetic variance (Cj,k) captured by each
eigentensor in each of the nine population G matrices
can be found in table 5 for E1

G and E2
G. The variation

among G matrices accounted for by E1
G, and conse-

quently, in the trait combination represented by n1;1
G ,

was dominated by particularly high levels of genetic
variance within each of the two most northerly
populations. By contrast, the variation among G

matrices captured by E2
G was primarily caused by a

peak in genetic variance in population six.
As a consequence of the large sampling variances

known to be associated with individual G matrices
(Hill & Thompson 1978), SG will have substantial
sampling error associated with its estimation. To assess
the effect of sampling error of the constituent G

matrices on the eigenstructure of SG, we conducted a
bootstrap resampling procedure that sampled sires
within each population (with replacement) and then
generated 100 bootstrapped replicates of the nine G

matrices. Only 100 bootstrap replicates were
employed, given the computational requirements of
estimating 900 G matrices employing restricted
maximum likelihood. We then constructed SG for
each of the 100 bootstrap replicates.

To determine the consistency with which the first
two eigentensors of SG were represented in the 100
bootstrap replicates, we projected the observed E1

G and
E2

G into each bootstrapped SG to calculate the variance
among G matrices captured by each eigentensor.
Figure 2 shows the relationship between the proportion
of variance among bootstrapped G matrices captured
by E1

G (x -axis) and E2
G ( y-axis). All projection values

for E1
G and E2

G were above zero, indicating that
the original eigentensors captured non-zero differentia-
tion among the hundred bootstrapped sets of
G matrices. The projection value of E1

G through the
bootstrapped SG was bigger than that of E2

G for all but
three bootstrap replicates (figure 2). This suggests that
the structure of SG is preserved to some extent among
bootstrap replicates.

We found no clear association between the change in
phenotypic mean of trait combinations along the
latitudinal cline and the change in genetic variance
captured by the first eigentensor ofSG (figure 3). For the
trait combination represented by n1;1

G , the mean
and genetic variance both reduce in a seemingly
co-coordinated fashion in the three most northerly
populations, but then change in an uncorrelated fashion
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Table 4. Dominant eigenvectors of the first two eigentensors of SG and SDG.

n1;1
G n2;1

G n2;2
G n1;1

DG n2;1
DG n2;2

DG

ek;i 0.9765 0.7339 K0.6396 K0.9925 0.7874 K0.6154

Z,Z-5,9-C24:2 0.1059 K0.3164 K0.2488 0.3879 K0.0372 0.5905
Z,Z-5,9-C25:2 0.1058 K0.4686 K0.2760 0.4913 0.0046 0.6197
Z-9-C25:1 0.1608 K0.2855 K0.0456 0.3755 0.0446 0.4260
2-Me-C26 0.4824 K0.4816 0.1795 0.3539 0.4309 0.1403
Z,Z-5,9-C27:2 0.1747 K0.0040 0.3097 0.1760 0.4384 K0.2115
2-Me-C28 0.6226 K0.5804 0.3841 0.4944 0.7159 0.0452
Z,Z-5,9-C29:2 0.3653 0.1637 0.6732 0.1867 0.2958 K0.0582
2-Me-C30 0.4092 K0.0569 0.3620 0.1777 0.1368 0.1264

Table 5. Coordinates of population G matrices (Cj,k) for the first two eigentensors of SG.

population C j,1 ðC j;12

=kGk2
F Þ!100 C j;2 ðC j;22

=kGk2
F Þ!100

1 6.316 96.7 K0.516 0.6
2 3.028 79.4 0.288 0.7
3 1.356 38.4 0.964 19.5
4 0.856 46.2 0.412 10.8
5 0.860 25.5 0.572 11.3
6 4.148 67.1 2.724 29.0
7 2.628 73.2 1.236 16.1
8 0.604 21.5 0.072 0.3
9 2.180 53.9 1.156 15.2
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thereafter (figure 3a). Similarly, for the second eigen-
tensor, the peak in genetic variance in the sixth
population, uncovered for n2;1

G (figure 3b), was not
associated with a change in trait mean, and a substantial
change in trait mean in population 4 was not associated
with a change in genetic variance. However, for n2;2

G , the
mean and genetic variance peak in the most northerly
region in a co-coordinated fashion (figure 3c).

An alternative approach to investigating the associ-
ation between trait means and genetic variance is to
determine the change in genetic variance in a particular
trait combination of interest. In clinal studies, for
example, the trait combination that has diverged the
most in mean among populations may be of particular
interest in characterizing clinal adaptation. This trait
combination, dmax, is estimated as the major axis of the
variance–covariance matrix of population means
(Lande 1979; Zeng 1988; Blows & Higgie 2003;
McGuigan et al. 2005). Here, dmax is sharply nonlinear,
and the rapid increase in mean in northerly populations
is matched by an increase in genetic variance (figure 4).
The change in genetic variance in dmax among the
populations was tested for significance by applying
the vector to generate a univariate trait. We then
implemented a mixed model (standard half-sib nested
random effects) that allowed each population to have
separate estimates of genetic variance in dmax, and then
compared the fit of this model with the one in which all
populations shared the same estimate of genetic
variance in this trait using a log-likelihood ratio test.
The model allowing for separate estimates of genetic
variance for each population was a significantly better
fit to the data (c9

2Z30.35, Pr!0.001).
The vector dmax can be projected onto Ek

G using
(2.4) to determine the change in genetic variance in this
trait combination among populations accounted for by
Phil. Trans. R. Soc. B (2009)
each eigentensor (figure 4). The large change in mean
in dmax in the two most northerly populations is

associated with an increase in genetic variance that
is shared between E1

G and E2
G. Interestingly, the

increase in variance in dmax, as a consequence of both
eigentensors, is because dmax is highly correlated with
n2;2
G (vector correlation of 0.90), but not completely

orthogonal from n1;1
G (vector correlation of 0.48).
(d) Associating variation in selection with

divergence in G matrices

A geometric approach to assessing the impact of
variation in selection on the variation in G matrices

http://rstb.royalsocietypublishing.org/
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can be implemented by using equation (2.8) and
projecting B 0 through SG. The projection of B 0 through
SG resulted in a variance of 0.0368, suggesting
that variation in linear selection accounted for only
0.74 per cent of the divergence in G matrices. The
same randomization procedure described in §3b above
was used to generate a distribution of 1000 random
estimates of B 0, and indicated that the observed level
Phil. Trans. R. Soc. B (2009)
of divergence in genetic variance in the direction of B 0

was significantly less than that expected at random
(PrZ0.006, two-tailed test).
(e) Predicting divergence in G matrices using

microevolutionary parameters

We generated SDG by first calculating DG for each
population using the average within-population G
matrix (Gw) from Chenoweth & Blows (2008), and
then using these nine matrices to construct S. Ideally,
an independent estimate of G from the ancestor of all
nine populations would have provided the base from
which to assess divergence in G (Steppan et al. 2002).
Implicit in our use of Gw is the assumption that the
population phylogeny is star-like in shape. This
assumption has some empirical support, as neutral
marker divergence among these populations suggested
only weak population structure, and an overall pattern
of isolation by distance (Chenoweth & Blows 2008).
Therefore, Gw was considered a reasonable proxy for
the ancestral G in the absence of further information
about the phylogeny of these populations.

The first and second eigentensors of SDG (see
table 11 in the electronic supplementary material)
accounted for 77.9 and 19.4 per cent of the variation
in SDG, respectively (table 3). The eigenanalysis of E1

DG

resulted in a single dominant eigenvalue (e1;1
DG; table 4).

All CHCs loaded onto n1;1
DG with the same sign and

similar magnitude, again consistent with the direction of
greatest genetic variance (gmax) in CHCs within
populations (see tables 1–9 in the electronic supple-
mentary material). The eigenanalysis of E2

DG yielded
two dominant eigenvalues of opposing sign (table 4),
reflecting that when genetic variance is predicted to
increase in the direction of n2;1

DG, it is predicted to decrease
in the direction of n2;2

DG (and vice versa) as a consequence

http://rstb.royalsocietypublishing.org/
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of the independent change in response togenetic variance
represented by E2

DG.
Finally, we determined whether the eigenstructure

of SDG predicted how the G matrices had diverged
among populations. The projection of these two
eigentensors through SG resulted in variances of
1.722 and 0.940, respectively, together explaining
53.8 per cent of the variance in SG. We assessed
the significance of the association of divergence in the
predicted change in G with the observed divergence in
G by generating random g matrices by drawing the
diagonal and off-diagonal elements from separate
distributions with their own mean and variance
calculated from the observed selection gradients, in
addition to generating random b vectors as above, and
then applying equation (2.9) to each replicate. In this
way, we generated a null distribution of the association
between SDG and SG, in which there was no natural
orientation of selection acting on G. The observed
projection was smaller than all random projections in
this distribution, equating to a probability level of
Pr!0.001. Therefore, even though variation in SDG

explained over 53 per cent of the variation in SG, this
was still significantly less than expected at random.
4. DISCUSSION
(a) The use of the genetic covariance tensor in

uncovering geographical patterns in genetic

variance

In this paper, we have provided a geometric framework
using higher-order tensors, which enables the empirical
characterization of how G matrices have diverged
among populations. This tensor-based approach has
two advantages in describing G matrix divergence.
First, the entirety of divergence in G matrices is
elegantly captured, and can be decomposed into
independent aspects of divergence (the eigentensors),
which in turn can be interpreted in a fashion similar to
the original G matrices themselves. The eigentensors,
therefore, hold considerable potential to enhance our
understanding of the genetic basis of adaptation in
natural or experimental populations. Second, diver-
gence in G matrices is characterized while maintaining
the geometric integrity of the individual population
matrices, which is a crucial determinant of the response
to selection within each population. As a consequence,
the tensor framework lends itself naturally to further
investigations of how microevolutionary processes may
have led to the observed divergence in G matrices using
the key equations for evolutionary change.

In the example of G matrix divergence with which
we have illustrated this method, the analysis of the
genetic covariance tensor SG provided a number of
insights into the evolution of genetic variance in CHCs
of male D. serrata. Much of the divergence in genetic
variance occurred in a single trait combination (the
first eigenvector of the first eigentensor), a surprising
conclusion that could not have been reached by
examining variation among the individual elements of
the population G matrices. Furthermore, this major
axis of divergence among G matrices was very similar to
the major axis of genetic variance (gmax) within eight
of the nine geographical populations investigated here,
Phil. Trans. R. Soc. B (2009)
and in previous work (Blows et al. 2004). Although a
theory of how G matrices diverge as a consequence of
genetic drift is yet to be fully developed (Phillips et al.
2001), the level of genetic variance represented in G
has been predicted to decrease in proportion to the
inbreeding coefficient in a population (Lande 1980b).
Hence, the largest changes in genetic variance gener-
ated by genetic drift would be expected in those
directions with the greatest genetic variance. While
our finding that the first eigenvector of the first
eigentensor is similar to gmax within populations is
consistent with genetic drift, we cannot exclude
selection from playing a role in this association, as the
response of the genetic variance to selection may be
greatest for those trait combinations that initially
contain the greatest genetic variance.

It is worth highlighting here a potential point of
confusion between the commonly employed QSTKFST

method of inferring adaptive genetic change and the
genetic covariance tensor. In QSTKFST comparisons,
the among-population variance in phenotypes raised
under common-garden conditions is referred to as the
additive genetic variance among populations (Merila &
Crnokrak 2001), and in its multivariate form, the
among-population G matrix (Kremer et al. 1997;
Chenoweth & Blows 2008). This method partitions
genetic differences in mean within and among popu-
lations, where the within-population variation is
subsequently partitioned into genetic and non-genetic
variance components in a breeding design. By contrast,
the genetic covariance tensor allows the character-
ization of among-population variation in genetic
variance, and not simply genetic differences in mean.
The projection of dmax through SG essentially returns
how genetic variance in the major axis of the among-
population G matrix from Chenoweth & Blows (2008)
differs among populations. What is clear from the
application of the two approaches to this set of nine
populations is that the major axes of genetic differen-
tiation among populations do not equate to the major
axes of divergence in genetic variance. This can be
attributed to the well-known complexity of the
association between the mean and genetic variance
(Barton & Turelli 1987), a point we now explore in
more detail below.

Our approach had mixed success in uncovering any
clear associations between the change in phenotypic
mean and genetic variance along the latitudinal cline
from which the populations were sampled. For example,
in a theoretical investigation of the behaviour of genetic
variance along clines, Barton (1999) found that for a
change in genetic variance, as a consequence of allele
frequency change, the ratio of the widths of the change in
mean and genetic variance should indicate the number
of loci involved. We found no obvious association
between mean and genetic variance for the major axis
of divergence captured by the first eigentensor of SG.
This may be because no such association between the
mean and genetic variance would be apparent for that
part of the divergence in genetic variance that is
consistent with genetic drift. In contrast, there was
some association between a substantial change in mean
in northern populations and an increase in genetic
variance in the trait combination that had diverged
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most in mean among the populations. Since the
divergence in mean in this trait combination is likely to
be associated with some form of climatic selection on
CHCs (Chenoweth & Blows 2008), this may explain
why an association between mean and genetic variance is
apparent in this trait combination. It is important to
note, however, that the associations we have drawn
between genetic variance and the putative forces of
genetic drift and climatic selection are not independent.
That is, the change in genetic variance in dmax was
captured by both the first and second eigentensors ofSG,
and therefore, as suggested above, genetic drift and
selection may be operating in non-orthogonal directions.

Theory indicates that the extent to which genetic
variance will change under selection depends heavily on
the genetic details of the selection response. In the
presence of a large number of loci of small effect under
selection, genetic variance will change little (Lande
1980a). However, with fewer genes, some of which have
relatively large effect, the change in genetic variance can
be substantial (Barton & Turelli 1987; Reeve 2000). The
substantial change in genetic variance in dmax is
consistent with a relatively simple genetic basis, although
given that the increase in genetic variance occurred
across only two of our populations, it is difficult to
ascertain with these data if Barton’s (1999) prediction of
relative widths of change in mean and variance supports
this view. Furthermore, the presence of any such gene of
major effect is not sufficient for a substantial difference in
genetic variance to remain among populations.
Fixation of the favoured allele would result in only a
transient effect on the G matrix (Agrawal et al.
2001), and therefore any major gene that contributes
to dmax is unlikely to have gone to fixation in these
northern populations.

(b) Microevolutionary predictions of divergence

in genetic variance

The microevolutionary analysis of the evolution of G
using the pattern of divergence in linear sexual
selection ðB0Þ was spectacularly unsuccessful in
explaining virtually any of the divergence in G matrices.
Instead, random patterns of selection were significantly
more likely to explain more of the divergence in G
matrices than current patterns of sexual selection. Such
an extreme association between the orientation of
sexual selection and the divergence in G matrices may
be attributed to how sexual selection affects genetic
variance in each population. There is, on average,
a non-random association between the linear selection
gradients and the G matrices within these nine
populations, reinforcing a number of experiments
that have indicated that persistent linear sexual
selection is effective at depleting genetic variance
(Blows et al. 2004; Hine et al. 2004; Van Homrigh
et al. 2007). Since the directions of linear selection in
groups of these populations are associated to some
extent based on whether they were allopatric or
sympatric with Drosophila birchii in the field
(figure 1a; Rundle et al. 2008), the depletion of genetic
variance tends to be in similar directions within these
two groups of populations. Therefore, the directions in
which linear selection operates are unlikely to contrib-
ute substantially to the variation among populations in
Phil. Trans. R. Soc. B (2009)
G as these directions generally have low genetic
variance. In summary, the overriding consequence of
sexual selection on male CHCs is to deplete genetic
variance in the trait combinations under selection, and
since the direction of sexual selection tends to be
similar among groups of populations, sexual
selection does not generate divergence in the genetic
covariance structure.

A complete microevolutionary prediction of the
divergence in G, however, requires taking into account
the orientation of the ancestral G, as the evolution of G
may be constrained considerably by the pattern of
genetic covariance itself. Although we have set out how
this may be accomplished using SDG, there are a
number of caveats that apply to the particular dataset
we have used to illustrate the method. Most import-
antly, although more than half the variance in SG was
explained by the first two eigentensors of SDG, this was
actually less than what would be expected given
random selection matrices acting on Gw. Therefore,
the strength of the association between SDG and SG

can be considered spurious.
The seeming ability to predict a reasonable pro-

portion of divergence among G matrices is likely to be
an artefact of two related causes. First, the calculation
of DG by equation (2.9) constrains DG to be in the
space of Gw. Most of the genetic variance is restricted to
a subspace of Gw, with the first four eigenvectors of Gw

accounting for over 94 per cent of the estimated genetic
variance within populations (Chenoweth & Blows
2008). Second, given that the orientation of Gw is
similar to the population G matrices, particularly with
regard to the major axis of genetic variance (and hence
little genetic variance remains in the direction of
selection as shown above), it is hardly surprising that
the divergence in predicted response captured by SDG

is heavily biased in the direction of this major axis of
genetic variance. So, our substitution of Gw for
ancestral G and the use of estimates of sexual selection,
which are strongly associated with the depletion of
genetic variance, are key limitations of the specific
application we present here. Ideally, an independent
estimate of ancestral G, coupled with estimates of
selection that are relevant to divergence along a
latitudinal cline (e.g. climatic natural selection),
would represent a better system to investigate the
ability of microevolutionary parameters to predict
divergence in G along a latitudinal cline.

(c) Conclusion

The division between microevolutionary processes that
generate evolutionary change, and the macroevolu-
tionary patterns in divergence among taxonomic
groups in nature, has yet to be fully bridged (Arnold
et al. 2001). At the level of traits means, retrospective
selection analyses have attempted to determine
whether the observed difference in trait means could
be predicted by the multivariate breeder’s equation
when it was assumed that divergence in trait means
equated to the historical selection gradient (Lande
1979; Turelli 1988). Extensions of this approach, based
on the theory of population divergence in multiple
traits (Felsenstein 1988; Zeng 1988; Hansen &
Martins 1996), have allowed the observed divergence
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in population means to be predicted from microevolu-

tionary estimates of both selection and genetic variance

(Chenoweth et al. submitted). Finally, the integration of

phylogenetic comparative methods with quantita-

tive genetic theory (Felsenstein 2008; Hohenlohe &

Arnold 2008) promises further insights into the roles of

selection and genetic constraints on population mean

divergence. Tensor-based approaches to the characteri-

zation of divergence in genetic covariance structure have

the potential to play a central role in the development

of a comparative quantitative genetic framework for

understanding divergence in genetic variance.

We are grateful to Peter Basser and Austin Lund for advice on
tensors, Russ Lande and an anonymous reviewer for
comments on the manuscript and the Australian Research
Council for funding.
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