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Perturbation of the gated-synchrony system in yeast with phenel-
zine, an antidepressant drug used in the treatment of affective
disorders in humans, leads to a rapid lengthening in the period of
the genome-wide transcriptional oscillation. The effect is a con-
certed, genome-scale change in expression that is first seen in
genes maximally expressed in the late-reductive phase of the cycle,
doubling the length of the reductive phase within two cycles after
treatment. Clustering of genes based on their temporal patterns of
expression yielded just three super clusters whose trajectories
through time could then be mapped into a simple 3D figure. In
contrast to transcripts in the late-reductive phase, most transcripts
do not show transients in expression relative to others in their
temporal cluster but change their period in a concerted fashion.
Mapping the trajectories of the transcripts into low-dimensional
surfaces that can be represented by simple systems of differential
equations provides a readily testable model of the dynamic archi-
tecture of phenotype. In this system, period doubling may be a
preferred pathway for phenotypic change. As a practical matter,
low-amplitude, genome-wide oscillations, a ubiquitous but often
unrecognized attribute of phenotype, could be a source of seem-
ingly intractable biological noise in microarray studies.
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The idea that the cell is an oscillator, an attractor, and that time
is an essential variable of the information content of cellular

systems, although well supported by both theory and experimental
findings, is still something of a novelty in genomics (1–4). Before the
development of genome-wide assays, experimental support for
viewing the cell as an oscillator was limited to measuring single
constituents or to analyzing macroscopic events such as DNA
replication or cell division after an intentional perturbation (5–7).
We now have the capacity to follow the transcriptional patterns of
all expressed genes to construct a system-wide dynamic network. By
assessing the temporal pattern of gene expression in all of the
transcripts closely through time after perturbation, we can derive
the first measurements of coupling strength among genes. Such
information is essential to constructing a detailed formal represen-
tation of the cellular attractor. Network representations based on
two-hybrid, chip–chip, or mass spectrometry interactions (8–13)
give us a sparse mapping of genes that interact but have not offered
clear insights into dynamic connectivity among genes and their
transcripts. Our effort here is to bring together genome-wide
changes through time and the more traditional gene-centered,
steady-state network perspective to uncover the dynamic architec-
ture of phenotype.

Lithium and phenelzine (PZ) are among the oldest of the
mood-stabilizing or antidepressant psychoactive drugs used in the
treatment of bipolar and other affective disorders in humans. It has
long been known that one of the effects of these agents is a slight
lengthening of the period of the circadian rhythm in both normal
volunteers and patients under controlled settings (14, 15). In
humans, as well as experimental systems as disparate as rodents and
the plant Kalanchoe, treatment with these agents increases the

period of the circadian clock by an amount just under an hour (16).
In the budding yeast Saccharomyces. cerevisiae, there is a similar 30-
to 40-min increase in period (17). Thus, in yeast, the period of the
oscillation in the respiratory�reductive cycle is nearly doubled from
40 to �70 min. Close examination of the benchmark oscillation in
dissolved oxygen (DO) in the gated synchrony system described
here indicates that the reductive phase is exactly doubled whereas
the length of the respiratory phase is unchanged by the drug.

The presence of a genome-wide pattern of oscillation favors a
view of the organization of cellular phenotype as a globally coupled
dynamic structure. Representative genes from the three observed
clusters (early reductive, late reductive, and respiratory) trace out
a 3D structure. Collectively, all of the transcripts of the system can
be pictured in concentration phase space as circling the steady state
at a few opposed and equally spaced phase angles (18–23). The
great strength of this view is that systems with large numbers of
variables can be visualized in rather simple low-dimensional figures.
These systems have a mathematical basis that has been well
understood for some time (18). The rules of behavior are specific,
and predictions can be readily tested in well controlled biological
systems.

Results
In a previous study using Affymetrix chips and close time series
sampling (every 4 min�32 chips�through three cycles), we showed
that oscillations are a ubiquitous property of yeast transcripts (4).
The temporal organization that gives rise to the well characterized
40-min oscillation (24–28) in DO is manifested in the sequestering
of transcripts into those maximally expressed in the reductive phase
and those maximally expressed in the respiratory phase. The
reductive phase is roughly twice the length of the respiratory phase,
and expression maxima are largely restricted to three equally spaced
intervals in the cycle, one in the respiratory phase and two in the
reductive phase. We have suggested that this transcriptional-
respiratory-attractor cycle (TRAC) is responsible for the temporal
organization of phenotype and for the timing of developmental
processes such as the cell cycle.

By mapping the genome-scale response to a perturbation known
to change the oscillation period, some evidence of the dynamic
structures underlying cellular phenotype may be revealed. Based on
experiments following the changes in only the DO, carbon dioxide
(CO2), and hydrogen sulfide (H2S) oscillations in response to PZ
treatment (Fig. 6, which is published as supporting information on
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the PNAS web site), it was thought that the response, although rapid
might, through close time sampling, allow a measure of the coupling
strength and connectivity among genes and their transcripts. Treat-
ment of cultures synchronous with respect to the TRAC and
showing an �40-min DO oscillation results in a rapid response to
PZ at doses between 0.5 and 3 mM. Lower doses have little effect
on the period. The DO oscillation in response to 1 mM PZ showed
that the period increased by 1.72. This increase was due to a nearly
perfect doubling of the reductive phase (no oxygen utilization; high
DO values), with little to no change in the duration of the
respiratory phase (Figs. 1, 6, and 7, which is published as supporting
information on the PNAS web site).

In the color intensity map of Fig. 1, all expression values for each
gene were scaled to the average expression of the pretreatment
cycle (samples 1–10). All genes were then ordered for their time of
maximum expression according to this scaling. Three major classes
of transcripts are apparent-early reductive, late reductive, and
respiratory, as described earlier (4). Overall, the effect of PZ
treatment seems to be a transient delay in the maximum expression
of reductive phase transcripts with respect to DO. The duration of
the respiratory phase and the patterns of expression in the respi-
ratory phase transcripts are not altered by the treatment except that
the time of maximum expression shifts in response to the length-
ening of the reductive phase (Figs. 2B and 8, which is published as
supporting information on the PNAS web site). Similarly, in the
early-reductive phase, oscillations in transcripts do not show the
same genome-scale changes until after the expansion of the late-

reductive period, as can be seen in Fig. 1 and in the expanded map
of the late-reductive phase transcripts in Fig. 2A and early and
respiratory phase transcripts (Fig. 2 B and C). The increase in the
duration of the reductive phase is accompanied by a doubling in the
number of peaks or maxima in expression in early and late-
reductive phase transcripts in the third cycle after PZ treatment,
thus transiently moving transcripts into the respiratory phase of the
DO curve (Fig. 2D). By the fourth cycle, the DO curve lengthens
and the reductive phase transcripts come closer to coordination
with DO again. Transcripts maximally expressed in the late-
reductive phase, as opposed to early-reductive, showed the most
notable changes in phase of maximum expression. The net effect is
a doubling in the duration of the reductive phase.

Measures of Periodicity in the Transcriptional Cycle. Fast Fourier
transform filtering. To provide further support for the genome-wide
nature of the oscillation in both the control and PZ-treated cultures,
two standard methods, fast Fourier transform and singular value
decomposition (SVD), were used to characterize transcript changes
through time. Fourier filtering was used to class the transcripts
according to where in the cycle they were maximally expressed and
to determine whether maximum power was in the 40-min range in
the first three cycles. Before beginning this classification, a decision
rule for calling a particular transcript present was established. In our
original study (4), we classed a transcript as present if it was present
in at least 3 of the 11 samples taken for each cycle of the control
series, leading to 5,432 transcripts being included in the analysis. If
we raised the standard for inclusion to require that the transcript be
present in all 32 samples, the number fell to 4,425 transcripts being
classed as present. Using a similar classification system in this study
and the default Affymetrix standards for a present call, we found
that 5,328 were present in the PZ-treated experimental series when
scored as present if present in at least three samples. If we raised
the requirement to present in all samples, the number of transcripts
scored as present fell to 4,429. Of these, 4,328 showed maximum
power in the 40-min range by fast Fourier transform analysis (Fig.
9, which is published as supporting information on the PNAS web
site). This amount is very similar to the number (4,311) found with
maximum power at 40 min in the previously published control
series. This analysis suggests that 4,328 (97.7%) of the 4,429
expressed genes show maximal power in the 40-min range.
SVD. SVD has seen wide use in the analysis of expression array data
and has proven to be a useful method for developing a global
representation of expression profiles (29, 30). In our earlier study
(4), shown here as the control, SVD uncovered the artifact in the
data set that was caused by sampling from two different cultures
with slightly different periods (Fig. 10, which is published as
supporting information on the PNAS web site). The ability of the
SVD application to find small differences between the two data sets
in that series because of differences in phase and amplitude of the
oscillation is a measure of its utility in studies of the transcriptional
cycle. Having established the global pattern in the control series
described in the earlier study (4), we next examined the information
content of the Eigengenes (equivalent to eigenvectors 29,30) in the
PZ-treated series involving a total of 5,328 expression patterns
through 48 samples taken at 4-min intervals through four cycles of
the oscillation. If SVD uncovers the details of the period-doubling
response by a method designed to detect global features of the data,
support for this finding would be enhanced. Information in the
PZ-treated cultures is collected into the first four Eigengenes (Fig.
3A). Typically, the first Eigengene serves to normalize the data set.
The results of the analysis are expanded in Fig. 3B, where Eigen-
genes 2, 3, and 4 capture the envelope of the reductive phase
transcripts. In contrast to the smooth pattern seen in Eigengenes 3
and 4 in the control series (Fig. 10), Eigengenes 3 and 4 in the
PZ-treated sample show sharp discontinuities after treatment.
Eigengene 3 captures the period-doubling response of the early-
reductive transcripts. A reconstruction of the attractor can be seen

Fig. 1. Period increase in DO and transcription in response to PZ treatment.
Samples for Affymetrix expression array analysis were taken at 4-min intervals
through four cycles of the oscillation as indicated by the black circles on the DO
curve (Upper). Bands overlying the DO oscillation indicate the respiratory
phase (azure) and reductive phase (yellow). After one complete cycle of
sampling, PZ was added at 1 mM at the time indicated in the figure. Transcripts
were classed according to their time of maximum expression in the cycle by
scaling expression to the average of the first 10 samples (control cycle) (Lower).
Expression intensity is scaled from �0.2 (dark blue) to �4 (red orange). The
black arrow represents the time of PZ treatment.
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in the plot of the principle Eigengenes 2, 3, and 4 (Fig. 3C). One
difference between this map and that for the control series (Fig. 11,
which is published as supporting information on the PNAS web site)
lies in the greater excursion of the map in the second and third
cycles after PZ treatment and in the folds in the posttreatment
cycles. This difference is consistent with an increase in the cycle
time of all expressed transcripts, further indicating that the infor-
mation content of the transcript expression as a whole is best
represented as cyclical. It should be emphasized that other projec-
tions of the 3D figure show better the folding in the surface (Fig.
12, which is published as supporting information on the PNAS web
site).

For comparison, a more transparent method was used. The
average of the three major temporal clusters of Figs. 1 and 2 are
shown in Fig. 2D and plotted together in Fig. 3D as a 3D recon-
struction of the trajectories through concentration phase space of
the four cycles of the experiment (Fig. 3D). The increase in the
amplitude of the respiratory and late-reductive phase transcripts is
expressed in the greater excursion of the late-reductive transcripts
in the third and forth cycles after treatment. This projection
emphasizes the cyclical nature of the system as a whole but does not
show the folding of the surface that would be expected from a
period-doubling response (Fig. 13, which is published as supporting
information on the PNAS web site).

A third independent assessment of the genome-wide behavior of
the TRAC was made by using self-organizing maps (SOM) and is
presented in Movie 1 (which is published as supporting information
on the PNAS web site) as an animation showing the cyclic pattern
of changes through all four cycles of the experiment in transcripts
clustered (31) using GEDI software (Fig. 14, which is published as
supporting information on the PNAS web site).

Concerted and Sequential Response to Perturbation. The period-
doubling response seems to involve the entire genome and to take
place rapidly, making an assessment of the sequence of specific

changes difficult despite the frequent sampling. Nevertheless, one
can assess those gene transcripts that change first and that change
most dramatically as an indication of their immediacy in the drug
response. In a globally coupled system, there is the expectation that
those transcripts that are most tightly coupled to the initial re-
sponders will be the next to change and so on until the system as a
whole has settled into a new basin of attraction. For the great
majority of transcripts, the response was to show an increase or
decrease in expression at the expected time rather than showing a
phase shift. Transcripts were first sorted into groups based on their
phase of maximum expression in the pretreatment cycle, as de-
scribed in Figs. 1 and 2. The groups provide a cluster of gene
transcripts with relatively low pretreatment variability. The grouped
transcripts were then ordered according to the similarity of their
scaled expression to the average scaled expression in the group as
a whole in the pretreatment (control) cycle. To adjust for slight
phase differences or other variance unrelated to the PZ treatment,
the sum of the squares difference of each transcript from the
average of the pretreatment cycle was calculated and used to
normalize the variance. Then, a three sample-wide measure of the
variance was windowed through the entire series after treatment.
Genes ordered in this way were then sorted according to their
difference from the average of the treated series as a function of
time after treatment. This differential difference in position was
plotted as a measure of which genes changed first and most rapidly
after PZ treatment, as shown in the intensity map of Fig. 4 and in
Table 1, which is published as supporting information on the PNAS
web site. Among the early responders with the greatest changes
after treatment are found a number involved in mitochondrial
function and RNA transcription and processing, along with some
seemingly involved in drug response. In particular, along with
YOR211c (MGM1) are YHR046C�INM1, a gene known to re-
spond to lithium and other drugs used in the treatment of depres-
sion (32). Most dramatic is the increase in YOR153W�PDR5, a
short-lived membrane ATP binding cassette involved in drug

Fig. 2. Late-reductive, early-reductive, and early-respiratory
transcripts. (A–C) Change in phase relationships and period of
transcripts after perturbation color intensity maps of the three
major classes of transcripts were expanded to show the pat-
terns after treatment. The x axis in A and B represents time in
minutes. As in Fig. 1, intensity was scaled from 0.2 (dark blue)
to �4 (red-orange). In D, the average expression level of all
transcripts maximally expressed in early-reductive phase (red),
late-reductive phase (blue), and respiratory phase (green) are
shown relative to the DO curve (black). Bands indicate the
respiratory phase (azure) and reductive phase (yellow).
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transport and resistance. One might speculate that tPDR5, which
elevates expression soon after treatment and remains high through
the experiment, is, like many in this small group, not a good example
of the period-doubling response. However, as Fig. 7 shows, it acts
to prevent PZ transport into the cells within 30 min of PZ addition

and thus causes the response to be transient. In general, there are
two types of responses that are favored by the method of selection:
transcripts that show very large changes in level of expression
throughout the experiment and those that show a phase shift in the
time of maximum expression relative to their pretreatment phase
maximum. It is worth emphasizing that few transcripts showed
phase changes distinct from those of their pretreatment control
group.

Modeling the Dynamic Architecture of Phenotype. Qualitative simi-
larities in the behavior of transcriptional oscillations described here
to the trajectories taken by the variables in the systems of ordinary
differential equations originally developed by Rössler (33) to
represent biochemical or macromolecular regulatory loops are hard
to ignore. The trajectory of the Rössler attractor was modified by
translation into the positive quadrant and rotated to produce a
model that more closely represented the behavior of the TRAC
(Fig. 5 and Appendix 1, which is published as supporting information
on the PNAS web site). First, there are just three major basins into
which all of the transcripts of the yeast cell settle. One of these, the
respiratory phase cluster, is notably more periodic than the other
two and moves from essentially background intensity to brief high
amplitude expression and returns quickly to background. This
behavior is similar to that of the z component of the attractor drawn
here (red line in Fig. 5A). The two reductive phase clusters tend to
show more nearly sinusoidal oscillations, a roughly 2-fold average
variation, and maintain a high level throughout the cycle similar to
the x and y variables of the Rössler.

The increase in period of the oscillation occurs exclusively
through a doubling of the reductive phase with the doubling in the
number of peaks in expression during this time (Fig. 5 A and B).
From the model, we would expect that, before treatment, there
would be peaks in expression of early-reductive, late-reductive, and
then respiratory transcripts. Following the period-doubling re-

Fig. 3. Reconstructing the tran-
scriptional oscillator. (A) The first
four principal Eigengenes are
shown for the 48 samples ordered
through time from 0 to 188 min for
all 5,328 genes from the PZ time
series for all four cycles. Eigengenes
E1–E4 as indicated by the color code
in the figure contain �80% of the
information. (B) Just the E2 and E3
vectors are shown to make clear the
increase in the number of maxima
in E3 after treatment. Plots of
Eigengenes E2, E3, and E4 are
shown in C as a 3D projection that
emphasizes the globally cyclic na-
ture of expression. The expansion
of the trajectory in the third cycle
and the increase in the number of
maxima in expression seen in A and
B and captured principally by
Eigengenes 3 and 4 are seen in the
Figs. 13 and 14. For comparison, a
3D reconstruction of the trajectory
of transcript concentration from
the averages of the scaled data of
three major temporal clusters from
Fig. 2D above is shown. The projec-
tion emphasizes the globally cyclic
nature of the system.

Fig. 4. First response changes in expression of late-reductive phase tran-
scripts. The transcripts found to be the early strong responders to PZ are shown
ordered according to the time after PZ when they are maximally different
from the cluster as a whole. Scaling and color mapping are as described in Fig.
1. Gene IDs and descriptions are in Table 1. Bands indicate the respiratory
phase (azure) and reductive phase (yellow).
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sponse, the sequence should be early-reductive, late-reductive, and
then early-reductive again and late-reductive, followed by respira-
tory transcripts. Individual transcripts and, less clearly, the averages
of all transcripts from the three major clusters show the trend (Figs.
2D and 14, which is published as supporting information on the
PNAS web site). It seems the SVD analysis captures this response
in the third and forth cycles after treatment (Fig. 3 A and B). An
example of a single transcript showing the period-doubling pattern
is shown in Fig. 14. A sketch (arrows in Fig. 5C) shows the proposed
path from the pretreatment cycle to the first cycle after treatment
during which the late-reductive phase transcripts are either phase
advanced or reduced in their expression and the increase in the
number of cycles through the reductive phase (Fig. 5D) before
entering the respiratory phase. It was surprising to find that an
‘‘off-the-shelf’’ attractor, modified only slightly, served to model this
complex experimental system so well. However, the correspon-
dence is imperfect, and, at this time, the sampling resolution is not
sufficient to test a more detailed mapping. Given that we are in the
early stage of dynamic systems biology, the specific system of
differential equations chosen to represent the phenomenon will
doubtless evolve.

Discussion
The gated synchrony system described here provides a unique
opportunity to do true time series analysis. In this coherent
population, all of the transcripts oscillate. Given this genome-wide
oscillation, the only plausible way to think about a cell is as an
oscillator, an attractor. Upon perturbation, the system shows a
period-doubling response, one of the expected behaviors of deter-
ministically noisy attractors. The envelope that contains the trajec-
tories of all transcripts through phase space is similar to that
described by the Rössler attractor.

The TRAC oscillation is an expression of a complex, biological
system with �5,000 transcripts and many more variables in toto. In
dynamic systems theory, the formal representations that show the
phenomenon of period doubling typically result from a change in
the value of one of the parameters of the system equations, in which
there are usually only three variables. To better represent this
multivariable system, we earlier modeled the genome-wide prop-
erties of transcription by coupling multiple attractors each taken to
represent a genetic regulatory loop of one or a few genes and their
products and end products (22, 23). With yeast continuous cultures,
we may now have a starting point for an experimental model for the
period-doubling phenomenon and a means of testing some of the
predictions of the simulations. If it can be generalized, the period-
doubling phenomenon may represent a common pathway for
differentiation. The idea that such phenotypic changes can be stably
maintained as a consequence of their settling into a new stable basin

of attraction or canal is not new (1). Because the period-doubling
effect is confined to the reductive phase, the relative length of time
spent in the reductive as opposed to the respiratory phase is
increased. It is known that the ratio of respiration to glycolysis in this
system is an accurate measure of the Warburg ratio, the relative
amount of energy derived from glycolysis as opposed to respiration.
It is reasonable to speculate that period doubling is a means by
which the Warburg ratio is increased in other systems.

Unrecognized Oscillations and the Reproducibility of Expression
Microarrays. Concern has been growing that high through-put
technologies, particularly expression microarrays (34), have
shown a persistent barrier in sensitivity leading to the idea that
there is a 2-fold boundary for change in the expression level of
any gene transcript. Below the 2-fold boundary, calls are less
certain. Although there is general agreement that the barrier
within a particular microarray assay system is biological, no ready
solution has been offered beyond increased numbers of biolog-
ical replicates (34, 35). Doing more replicates might work if the
cells or tissues are truly random in time or making transient
excursions away from the steady state. However, taking increas-
ing numbers of replicates, as many as 12 in some instances, has
unexpected consequences if the system is universally oscillatory.
If cells show highly organized temporal patterns of expression
that go unrecognized, then repeated sampling and statistical
analysis will yield a time-averaged value that is near the steady
state of the oscillatory system but is not a value taken at any time
during the oscillation. It is an artifact and guarantees that most
of the genes with regular trajectories through concentration
space will fall below the values needed to make a change call.
Perfect randomness is likely to be as rare as perfect synchrony,
and cells are not at a steady state. From the steady-state
statistical perspective, it is not possible to show, on a gene by
gene basis, that each gene transcript oscillates. However, in
dynamic systems theory, there are classic papers that make the
case that, in a coupled system where some of the elements are
shown to oscillate, the likelihood that the system as a whole
oscillates increases rapidly as the number of elements is in-
creased beyond a rather small fraction of the total (36, 37).

Conservation of Period. The temporal coordination manifested by
the TRAC seems to involve essentially all cellular functions thus far
examined. Given the alternation of the redox state, it should not be
surprising to find that the alternation of respiration and reduction
also extends to the functional state of the mitochondria (4, 38). Of
current interest is the role that these high amplitude oscillations play
in protein synthesis, degradation, and functional state. Transcripts
for ubiquitin-proteosome function are made at just one phase of the

Fig. 5. Mapping period doubling onto a
low-dimensional surface. A sketch of pro-
posed paths in concentration phase space
of the transcripts is shown based on the
Rössler attractor. (A and B) A simulation of
the starting and period doubled states is
shown for the late-reductive genes (black)
and the respiratory gene transcripts (red).
Arrows in C indicate the path that would be
followed by late-reductive transcripts to
reach the levels seen in the first cycle after
treatment cycle 2. (D) The continuing path
and the state reached by the late-reductive
transcripts by cycle three (second cycle af-
ter treatment). A sample simulation is
shown in Appendix 1.
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cycle, suggesting that protein catabolism is temporally organized
and oscillatory (4). This temporal organization extends to the
synchronous gating of cells into S-phase. DNA replication in these
cells begins abruptly at the end of the respiratory phase as oxygen
consumption decreases and H2S levels rise. The restriction of DNA
replication to the reductive phase of the cycle is seen as an
evolutionarily important mechanism for preventing oxidative dam-
age to DNA during replication. Moreover, conserved genes, those
whose rate of substitution is in the lowest third of all genes, are
transcribed almost exclusively in the reductive phase of the cycle.

The idea that certain functional domains are conserved through
great evolutionary distances is the core of our understanding of
modern molecular evolution (39). Moreover, a number of papers
have appeared showing that the rate of evolution of a protein is
related to the number of measurable interactions, and the argument
has been made that evolutionary changes may occur largely by
coevolution (16). What has rarely, if ever, been considered is the
idea that a dynamic property of the system might impose similar or
greater constraints on its variation over time (40). An argument can
be made for this idea based on the rapid genome-scale change in
expression shown here. If, as we show, ‘‘everything oscillates,’’ then
it is likely that, to a greater of lesser extent, every gene product
interacts with some or many other gene products. In such a globally
coupled system, the constraints on period change might be expected
to be extreme. To put it another way, there may be a very limited
path through which such change occurs and constraints on that path
might be expected to follow a period-doubling bifurcation. Period
mutants of the circadian clock and quantized generation times in
cultured mammalian cells tend to cluster at a somewhat restricted
set of values in the �4-h range (40, 41). The gating of yeast cells in
the continuous synchrony cultures used here would seem to be
another manifestation of this underlying timekeeper. In particular,
�40 min, �80 min, and �240 min (4 h) are the most frequently
seen. However, a recent study using a different yeast strain grown
in limiting glucose and under high oxygen tension showed an �5-h
DO oscillation and a similar pattern of transcriptional oscillations
to that reported here and earlier (42, 43). In nonlinear dynamic
systems, the TRAC and most of the temporal organization asso-
ciated with it seem to be maintained through the period-doubling
process. This path is significant in representing period doubling and,
perhaps, period three bifurcations. An intriguing question is
whether this behavior generalizes to mammalian cells and to stem
cell differentiation.

Methods
Medium and Culture Conditions. The fermenter (650 ml) was inoc-
ulated with 2 � 107 cells of the yeast strain IFO0233 and grown as
described (4) except glucose monohydrate was added at 19.25
g�liter (Sigma, St. Louis, MO). Antifoam A was added at 0.2
ml�liter, and the pH was maintained at 4.0. To maintain oscillations,
cultures were shifted from batch to continuous mode at a dilution
rate of 0.086�h. Phenelzine (cat. no. 156136; MP Biomedicals,
Solon, OH) was added at the reductive phase.

RNA Preparation. RNA was purified and processed for Affymetrix
GeneChip analysis as described in Supporting Methods, which is
published as supporting information on the PNAS web site. RNA
yield differences between samples were normalized by adding
Affymetrix poly(A) standards to the cell pellets at the beginning of
RNA isolation.

Data Analysis. Results were quantified and analyzed by using
MicroArray Suite 6.1 and GCOS software. Excel files were created
to permit further processing and then put into Mathcad (Mathsoft
Inc., Cambridge, MA), Mathematica (Wolfram Research, Cham-
paign, IL), SigmaPlot, or in MatLab (Mathworks Inc., Natick, MA).
Intensity values for each of the verified ORFs in the S98 chip and
the yeast S2 chip were linked to the Saccharomyces Genome
Database (SGD) site, and both their genetic and physical map
locations were associated with the intensity values for each gene as
described (4). The results for all ORFs scored as present by using
the default Affymetrix settings were identified according to the
original sample number and the phase in the DO oscillation at
which the maximum expression occurred. Expression patterns were
then mapped according to the time of maximum as a starting point
for presentation. Further analysis was performed for all ORFs
present in all samples in each of the four cycles. Of the 5,443 ORFs
scored as present in at least 3 of the 48 samples, 5,254 had P values
�0.01 and the remainder had P values �0.035 (detailed methods
and sample calculations are available in Supporting Methods).
Original data are available from the National Center for Biotech-
nology Information�Gene Expression Omnibus web site.
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