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1. Mathematical Framework: HO GSVD

Comparative analyses of large-scale datasets promise to
enhance our fundamental understanding of the data by
distinguishing the similar from the dissimilar among
these data. For example, comparative analyses of
global mRNA expression from multiple model organ-
isms promise to enhance fundamental understanding of
the universality and specialization of molecular biological
mechanisms, and may prove useful in medical diagnosis,
treatment and drug design [1]. Existing algorithms limit
analyses to subsets of homologous genes among the dif-
ferent organisms, effectively introducing into the analysis
the assumption that sequence and functional similarities
are equivalent [2]. For sequence-independent compar-
isons [3], mathematical frameworks are required that can
distinguish the similar from the dissimilar among mul-
tiple large-scale datasets tabulated as matrices with the
same column dimension and different row dimensions,
corresponding to the different sets of genes of the differ-
ent organisms. The only such framework to date, that
of the generalized singular value decomposition (GSVD)
[4–6] is limited to two matrices.

Recently we showed that the GSVD provides a com-
parative mathematical framework for global mRNA ex-
pression datasets from two different organisms, tabulated
as two matrices with the same column dimension and
different row dimensions, where the mathematical vari-
ables and operations represent biological reality [7]. In
this application, one matrix tabulates DNA microarray-
measured genome-scale mRNA expression from the yeast
S. cerevisiae, sampled at n time points at equal time in-
tervals during the cell-cycle program. This matrix is of
size m1-S. cerevisiae genes × n-DNA microarrays. The
second matrix tabulates data from the HeLa human cell
line, sampled at the same number of time points, also
at equal time intervals, and is of size m2-human genes
× n-arrays. The underlying assumption of the GSVD as
a comparative mathematical framework for the two ma-
trices is that there exists a one-to-one mapping among
the columns of the matrices, but not necessarily among
their rows. The GSVD factors each matrix into a prod-
uct of an organism-specific matrix of size m1-S. cerevisiae
genes or m2-human genes × n-“arraylets,” i.e., left ba-
sis vectors, an organism-specific diagonal matrix of size
n-arraylets × n-“genelets,” i.e., right basis vectors, and
a shared matrix of size n-genelets × n-arrays.

We showed that the mathematical variables of the
GSVD, i.e., the patterns of the genelets and the two sets
of arraylets, represent either the similar or the dissimilar
among the biological programs that compose the S. cere-
visiae and human datasets. Genelets of common signifi-
cance in both datasets, and the corresponding arraylets,
represent cell-cycle checkpoints that are common to S.
cerevisiae and human. Simultaneous reconstruction and
classification of both the S. cerevisiae and human data
in the common subspace that these patterns span out-
lines the biological similarity in the regulation of their
cell-cycle programs. Patterns almost exclusive to either

dataset correlate with either the S. cerevisiae or the hu-
man exclusive synchronization responses. Reconstruc-
tion of either dataset in the subspaces of the common
vs. exclusive patterns represents differential gene expres-
sion in the S. cerevisiae and human conserved cell-cycle
programs vs. their unique synchronization-response pro-
grams, respectively. Notably, relations such as these be-
tween the expression profiles of the S. cerevisiae genes
KAR4 and CIK1, which are known to be correlated
in response to the synchronizing agent, the α-factor
pheromone, yet anticorrelated during cell division, are
correctly depicted.

We now define a higher-order GSVD (HO GSVD) of
N ≥ 2 datasets, tabulated as N real matrices Di with
the same column dimension and, in general, different row
dimensions. In our form of the HO GSVD, each data ma-
trix Di is assumed to have full column rank and is fac-
tored as the product Di = UiΣiV

T , where Ui is the same
shape as Di (rectangular), Σi is diagonal and positive
definite, and V is square and nonsingular. The columns
of Ui have unit length; we call them the “left basis vec-
tors” for Di (a different set for each i). The columns of
V also have unit length; we call them “right basis vec-
tors,” and they are the same in all factorizations. In the
application of the HO GSVD to a comparison of global
mRNA expression from N ≥ 2 organisms, the right ba-
sis vectors are the genelets and the N sets of left basis
vectors are the N sets of arraylets. We use the notation:

Ui ≡ (ui,1 . . . ui,n), ‖ui,k‖ = 1, (1)

Σi ≡ diag(σi,k), σi,k > 0, (2)

V ≡ (v1 . . . vn), ‖vk‖ = 1. (3)

We call {σi,k} the “higher-order generalized singular
value set.” They are weights in the following sums of
rank-one matrices of unit norm:

Di = UiΣiV
T =

∑
k

σi,kui,kv
T
k , ‖ui,kvTk ‖ = 1. (4)

Hence we regard the kth values σi,k as indicating the sig-
nificance of the kth right basis vector vk in the matrices
Di (reflecting the overall information that vk captures in
each Di in turn). To obtain the factorizations, we work
with the matrices Ai = DT

i Di and the matrix sum S,
defined as the arithmetic mean of all pairwise quotients
AiA

−1
j , or equivalently of all Sij = 1

2 (AiA
−1
j + AjA

−1
i ),

i 6= j. The eigensystem SV = V Λ is used to define V ,
and the factors Ui and Σi are computed from Di and V .

To clarify our choice of S, we note that in the GSVD,
defined by Van Loan [4], the matrix V can be formed
from the eigenvectors of the unbalanced quotient A1A

−1
2

(Supplementary Section 1.1). We observe that this V
can also be formed from the eigenvectors of the balanced
arithmetic mean S12 = 1

2 (A1A
−1
2 + A2A

−1
1 ). We prove

that in the case of N = 2, our definition of V by using
the eigensystem of S ≡ S12 = 1

2 (A1A
−1
2 + A2A

−1
1 ) leads

algebraically to the GSVD and therefore, as Paige and
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Supplementary Figure S1. The GSVD of two matrices D1 and D2 is reformulated as a linear transforma-
tion of the two matrices from the two rows × columns spaces to two reduced and diagonalized left basis vectors ×
right basis vectors spaces. The right basis vectors are shared by both datasets. Each right basis vector corresponds
to two left basis vectors.

Saunders showed [5], can be computed in a stable way.
We also note that in the GSVD, the matrix V is invariant
under the exchange of the two matrices D1 and D2.

Therefore, we define our HO GSVD for N ≥ 2 matrices
by using the balanced arithmetic mean S of all pairwise
arithmetic means Sij , each of which defines the GSVD
of the corresponding pair of matrices Di and Dj , not-
ing that S is invariant under the exchange of any two
matrices Di and Dj .

We also show that the existing SVD and GSVD
decompositions are in some sense special cases of our
HO GSVD (Supplementary Section 1.2). Finally, we
conjecture a role for our exact HO GSVD in iterative
approximation algorithms (Supplementary Section 1.3).

1.1. The Matrix GSVD
1.1.1. Construction of the matrix GSVD. Suppose
we have two real matrices D1 ∈ Rm1×n and D2 ∈ Rm2×n

each with full column rank. Van Loan [4] defined the
GSVD of D1 and D2 as

UT
1 D1X ≡ Σ1,

UT
2 D2X ≡ Σ2, (5)

where each Ui ∈ Rmi×n has orthonormal columns, X ∈
R

n×n is nonsingular, and the Σi = diag(σi,k) ∈ Rn×n are

diagonal with σi,k > 0 (i = 1, 2). Paige and Saunders [5]
showed that the GSVD can be computed in a stable way
by orthogonal transformations. In the full column-rank
case it takes the form

D1 ≡ U1Σ1V
T ,

D2 ≡ U2Σ2V
T , (6)

where U1, U2 and

[
Σ1

Σ2

]
have orthonormal columns [6],

and V is square and nonsingular.
We work with the form of Supplementary Equation

(6), but we find it useful and more similar to the stan-
dard SVD [6] if we assume that the columns of V are
scaled to have unit length, with the columns of Σi scaled
accordingly. Note that the ratios σ1,k/σ2,k are not al-
tered by the scaling.

In place of the methods of Van Loan [4] and Paige and
Saunders [5], we construct the GSVD of Supplementary
Equation (6) as follows. We obtain V from the eigensys-
tem of S, the arithmetic mean of the quotients A1A

−1
2

and A2A
−1
1 of the matrices A1 = DT

1 D1 and A2 = DT
2 D2:

S ≡ S12 = 1
2 (A1A

−1
2 +A2A

−1
1 ),

SV = V Λ,

V ≡ (v1 . . . vn), Λ = diag(λk), (7)
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with ‖vk‖ = 1. Given V , we compute matrices Bi by
solving two linear systems

V BT
i = DT

i ,

Bi ≡ (bi,1 . . . bi,n), i = 1, 2, (8)

and we construct Σi and Ui = (ui,1 . . . ui,n) by normal-
izing the columns of Bi:

σi,k = ‖bi,k‖,
Σi = diag(σi,k),

Bi = UiΣi. (9)

We prove below that S is nondefective (it has n indepen-
dent eigenvectors) and its eigensystem is real.

From Supplementary Equations (8) and (9) we have
Di = BiV

T = UiΣiV
T as in Supplementary Equation

(6). We see that the rows of both D1 and D2 are
superpositions of the same right basis vectors, the
columns of V (Supplementary Figure S1). This is the
construction that we generalize in Equations (1)–(4) to
compute our HO GSVD.

1.1.2. Interpretation of the GSVD construction.
In our GSVD comparison of two matrices, we interpreted
the kth diagonals of Σ1 and Σ2, i.e., the “generalized
singular value pair” (σ1,k, σ2,k), as indicating the signif-
icance of the kth right basis vector vk in the matrices
D1 and D2, and reflecting the overall information that
vk captures in D1 and D2 respectively [7]. The ratio
σ1,k/σ2,k indicates the significance of vk in D1 relative to
its significance in D2.

A ratio of σ1,k/σ2,k = 1 corresponds to a basis vector
vk of equal significance in D1 and D2. GSVD compar-
isons of two matrices showed that right basis vectors of
approximately equal significance in both matrices reflect
themes that are common to the two matrices under com-
parison [7].

A ratio of σ1,k/σ2,k � 1 corresponds to a basis
vector vk of almost negligible significance in D2 rel-
ative to its significance in D1. Likewise, a ratio of
σ1,k/σ2,k � 1 indicates a basis vector vk of almost
negligible significance in D1 relative to its significance
in D2. GSVD comparisons of two matrices showed that
right basis vectors of negligible significance in one ma-
trix reflect themes that are exclusive to the other matrix.

1.1.3. Mathematical properties of Λ and V in the
GSVD construction. Note that our GSVD construc-
tion in Supplementary Equations (7)–(9) is well defined
for any square nonsingular V . We now show that our
particular V leads algebraically to the GSVD of Supple-
mentary Equation (6), ignoring the rescaled columns of
Σi and V . Recall that Ai = DT

i Di and Di = UiΣiV
T

with Σi diagonal.
In practice we would prefer not to formAi or S directly.

Instead we may work with the QR factorizations Di =
QiRi, where QT

i Qi = I and Ri is upper triangular and

nonsingular. Define another triangular matrix R and its
SVD to be

R ≡ R1R
−1
2 = Ũ Σ̃Ṽ T , (10)

where Ũ and Ṽ are square and orthogonal, and Σ̃ =
diag(σ̃k), σ̃k > 0. We then have

S = 1
2 [(RT

1 R1)(RT
2 R2)−1 + (RT

2 R2)(RT
1 R1)−1],

R−T
1 SRT

1 = 1
2 [R1(RT

2 R2)−1RT
1 +R−T

1 (RT
2 R2)R−1

1 ]

= 1
2 [RRT + (RRT )−1]

= ŨΛŨT , (11)

where Λ ≡ 1
2 (Σ̃2 + Σ̃−2) ≡ diag(λk). Thus

S(RT
1 Ũ) = (RT

1 Ũ)Λ, (12)

SV = V Λ, V ≡ RT
1 ŨD, (13)

where the diagonal matrix D normalizes RT
1 Ũ so that V

has columns of unit length.

Supplementary Theorem S1. The matrices U1 and
U2 constructed in Supplementary Equation (9) have or-
thonormal columns (UT

1 U1 = UT
2 U2 = I).

Proof. From Supplementary Equation (8) we have
V BT

i BiV
T = DT

i Di, so that

(RT
1 ŨD)BT

i Bi(DŨ
TR1) = RT

i Ri

⇒ DBT
1 B1D = I,

DBT
2 B2D = ŨTR−T

1 (RT
2 R2)R−1

1 Ũ = Σ̃−2,

with help from Supplementary Equations (10), (12) and
(13). We see that both BT

i Bi are diagonal, and the quan-
tities in Supplementary Equation (9) must be

U1 = B1D, Σ1 = D−1, (14)

U2 = B2DΣ̃, Σ2 = Σ̃−1D−1, (15)

with Ui column-wise orthonormal.

Supplementary Theorem S2. The eigenvalues of S
satisfy λk ≥ 1, and S has a full set of n eigenvectors (it
is nondefective). Also, the eigenvectors are real.

Proof. The equivalence transformation of Supplementary
Equation (11) shows that S has the same eigenvalues

as ŨΛŨT , namely Λ. From the definition of Λ and Σ̃,
the eigenvalues are λk = 1

2 (σ̃2
k + 1/σ̃2

k) ≥ 1. Also, in
the eigensystem of S in Supplementary Equation (13),

V = RT
1 ŨD is a product of real nonsingular matrices

and hence is real and nonsingular.

Supplementary Theorem S3. An eigenvalue λk = 1
corresponds to a right basis vector vk of equal significance
in both matrices D1 and D2. That is, σ1,k/σ2,k = 1.
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Supplementary Figure S2. The higher-order GSVD (HO GSVD) of three matrices D1, D2, and D3 is a
linear transformation of the three matrices from the three rows × columns spaces to three reduced and diagonalized
left basis vectors × right basis vectors spaces. The right basis vectors are shared by all three datasets. Each right
basis vector corresponds to three left basis vectors.

Proof. From the orthonormality of U1 and U2 of Equa-
tions (14) and (15), and our GSVD construction of Equa-
tions (7)–(9), we have λk = (σ2

1,k/σ
2
2,k + σ2

2,k/σ
2
1,k)/2.

Therefore, λk = 1 can occur only if σ1,k/σ2,k = 1. In
other words, λk = 1 if the kth right basis vector vk is
equally significant in D1 and D2.

Note that the GSVD is a generalization of the SVD
in that if one of the matrices is the identity matrix, the
GSVD reduces to the SVD of the other matrix.

In Equations (1)–(4), we now define a HO GSVD
and in Theorems 1–3 and Corollary 1 we show that
this new decomposition extends to higher orders all of
the mathematical properties of the GSVD except for
complete column-wise orthogonality of the left basis
vectors that form the matrices Ui for all i. We proceed
in the same way as in Supplementary Equations (7)–(9).

1.2. The Matrix GSVD and SVD as Special Cases
Let us now show that the GSVD and the standard SVD

are special cases of our HO GSVD.

Supplementary Theorem S4. Suppose matrices D
and Dj are real and have full column rank. The HO
GSVD of N matrices satisfying Di = D for all i 6= j
reduces to the GSVD of the two matrices D and Dj.

Proof. Substituting Di = D for all i 6= j in Equation
(2), we obtain the matrix sum S = 1

N [AA−1
j +AjA

−1 +

(N −2)I], with A = DTD. The eigenvectors of S are the
same as the eigenvectors V of 1

2 (AA−1
j + AjA

−1), and
Supplementary Theorem S2 shows that V exists. Solving
two linear systems for B and Bj and normalizing the
solutions,

V BT = DT
i = DT , B = UΣ,

V BT
j = DT

j , Bj = UjΣj ,

reduces the HO GSVD of Equation (1) to the GSVD of
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D and Dj of Supplementary Equation (6):

Di = D = UΣV T , i 6= j,

Dj = UjΣjV
T .

Supplementary Theorem S1 shows that the columns of
U and Uj are orthonormal.

Supplementary Theorem S5. Suppose the matrix Dj

is real and has full column rank. The HO GSVD of N
matrices satisfying Di = I for all i 6= j reduces to the
SVD of Dj.

Proof. SubstitutingDi = I for all i 6= j in Supplementary
Equation (2), we obtain the matrix sum S = 1

N [Aj +
A−1

j + (N − 2)I]. The symmetry of S implies that its
eigenvectors V exist and are orthonormal. Computing
the matrix Bj from

V BT
j = DT

j , Bj = UjΣj ,

gives Dj = UjΣjV
T , and Supplementary Theorem S1

shows that the columns of Uj are orthonormal. Hence
the factorization must be the SVD of Dj [6].

1.3. Role in Approximation Algorithms
Recent research showed that several higher-order gener-
alizations are possible for a given matrix decomposition,
each preserving only some but not all of the properties
of the matrix decomposition [12, 13].

Our HO GSVD preserves the exactness as well as the
diagonality of the matrix GSVD, i.e., all N matrix fac-
torizations in Equation (1) are exact and all N matrices
Σi are diagonal. In general, our HO GSVD does not
preserve the orthogonality of the matrix GSVD, i.e., the
matrices Ui in Equation (1) are not necessarily column-
wise orthonormal. For some applications, however, one
might want to preserve the orthogonality instead of the
exactness of the matrix GSVD. An iterative approxima-
tion algorithm might be used to compute for a set of
N > 2 real matrices Di ∈ Rmi×n, each with full column
rank, an approximate decomposition

D1 ≈ U1Σ1V
T ,

D2 ≈ U2Σ2V
T ,

...

DN ≈ UNΣNV
T , (16)

where each Ui ∈ Rmi×n is composed of orthonormal
columns, each Σi = diag(σi,k) ∈ Rn×n is diagonal with
σi,k > 0, and V is identical in all N matrix factorizations.

If there exist an exact decomposition of Equation (1)
where the matrices Ui are column-wise orthonormal, then
it is reasonable to expect that the iterative approxima-
tion algorithm will converge to that exact decomposition.
More than that, when the iterative approximation algo-
rithm is initialized with the exact decomposition, it is

reasonable to expect convergence in just one iteration.
We show below that if there exist an exact decomposition
of Equation (1) in which the matrices Ui are column-wise
orthonormal, our HO GSVD leads algebraically to that
exact decomposition.

Supplementary Theorem S6. If there exist an exact
HO GSVD of Equation (1) where the matrices Ui are
column-wise orthonormal, then our particular V leads al-
gebraically to the exact decomposition.

Proof. If there exist an exact decomposition with column-
wise orthonormal Ui for all i, then Ai = DT

i Di = V Σ2
iV

T

and the right basis vectors, i.e., the columns of V , simul-
taneously diagonalize all pairwise quotients AiA

−1
j V =

V Σ2
i Σ−2

j as well as their arithmetic mean SV = V Λ.
Therefore, the V of the eigensystem of S in Equation

(2) is equivalent to the V of the HO GSVD of Equation
(1) with column-wise orthonormal Ui for all i.

We conjecture, therefore, the following role for our ex-
act HO GSVD in iterative approximation algorithms.

Supplementary Conjecture S1. An iterative ap-
proximation algorithm will converge to the optimal
approximate decomposition of Supplementary Equation
(16) in a significantly reduced number of iterations when
initialized with our exact HO GSVD, rather than with
random Ui, Σi and V .

2. Biological Application: Comparison of Global
mRNA Expression Datasets from Three Different
Organisms

2.1. S. pombe, S. cerevisiae and Human Datasets
Rustici et al. [15] monitored mRNA levels in the yeast
Schizosaccharomyces pombe over about two cell-cycle pe-
riods, in a culture synchronized initially by the cdc25-22
block-release late in the cell-cycle phase G2, relative to
reference mRNA from an asynchronous culture, at 15min
intervals for 240min. The S. pombe dataset we analyze
(Supplementary Dataset S1) tabulates the ratios of gene
expression levels for the m1=3167 gene clones with no
missing data in at least 14 of the n=17 arrays. Of these,
the mRNA expression of 380 gene clones was classified as
cell cycle-regulated by Rustici et al. or Oliva et al. [16].

Spellman et al. [17] monitored mRNA expression in
the yeast Saccharomyces cerevisiae over about two cell-
cycle periods, in a culture synchronized initially by the
α-factor pheromone in the cell-cycle phase M/G1, rela-
tive to reference mRNA from an asynchronous culture, at
7min intervals for 112min. The S. cerevisiae dataset we
analyze (Supplementary Dataset S2) tabulates the ratios
of gene expression levels for the m2=4772 open reading
frames (ORFs), or genes, with no missing data in at least
14 of the n=17 arrays. Of these, the mRNA expression
of 641 ORFs was traditionally or microarray-classified as
cell cycle-regulated.
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Supplementary Figure S3. Correlations among the n=17 arraylets in each organism. Raster displays of
UT
i Ui, with correlations ≥ ε = 0.33 (red), ≤ −ε (green) and ∈ (−ε, ε) (black), show that the arraylets ui,k with

k = 13, . . . , 17 that correspond to 1 . λk . 2, are ε = 0.33-orthonormal to all other arraylets in each dataset. The
corresponding five genelets vk are approximately equally significant with σ1,k : σ2,k : σ3,k ∼ 1 : 1 : 1 in the S. pombe,
S. cerevisiae and human datasets, respectively (Figure 2). Following Theorem 3, therefore, these genelets span the
approximately “common HO GSVD subspace” for the three datasets.

Whitfield et al. [18] monitored mRNA levels in the hu-
man HeLa cell line over about two cell-cycle periods, in
a culture synchronized initially by a double thymidine-
block in S-phase, relative to reference mRNA from an
asynchronous culture, at 2hr intervals for 34hr. The
human dataset we analyze (Supplementary Dataset S3)
tabulates the ratios of gene expression levels for the
m3=13,068 gene clones with no missing data in at least
14 of the n=17 arrays. Of these, the mRNA expression
of 787 gene clones was classified as cell cycle-regulated.

Of the 53,839, 81,124 and 222,156 elements in the S.
pombe, S. cerevisiae and human data matrices, 2420, 2936
and 14,680 elements, respectively, i.e., ∼5%, are missing
valid data. SVD [6] is used to estimate the missing data
as described [7]. In each of the data matrices, SVD of
the expression patterns of the genes with no missing data
uncovered 17 orthogonal patterns of gene expression, i.e.,
“eigengenes.” The five most significant of these patterns,
in terms of the fraction of the mRNA expression that they
capture, are used to estimate the missing data in the re-
maining genes. For each of the three data matrices, the
five most significant eigengenes and their corresponding
fractions are almost identical to those computed after the
missing data are estimated, with the corresponding cor-
relations >0.95 (Supplementary Mathematica Notebooks
S1 and S2). This suggests that the five most significant
eigengenes, as computed for the genes with no missing
data, are valid patterns for estimation of missing data.
This also indicates that this SVD estimation of missing
data is robust to variations in the data selection cutoffs.

We compute the HO GSVD of the three data matrices
after missing data estimation by using Equations (1)–(4).

Following Theorem 3, we find that the approximately
common HO GSVD subspace of the three datasets is
spanned by the five genelets vk k = 13, . . . , 17 (Figure 2
and Supplementary Figure S3).

2.2. Common Subspace Interpretation
In analogy with the GSVD [7], a common HO GSVD
genelet and the N = 3 corresponding arraylets, which
are approximately orthonormal to all other arraylets in
the corresponding datasets (Theorem 3), are inferred to
represent a biological process common to the three or-
ganisms and the corresponding cellular states when a
consistent biological or experimental theme is reflected
in the interpretations of the patterns of the genelet and
the arraylets.

A genelet vk is associated with a biological process or
an experimental artifact when its pattern of expression
variation across the arrays, i.e., across time, is inter-
pretable. An arraylet ui,k is parallel- and antiparallel-
associated with the most likely parallel and antiparal-
lel cellular states according to the annotations of the
two groups of m genes each, with largest and small-
est levels of expression in this arraylet among all mi

genes, respectively. The P -value of a given association,
i.e., P (y;m,mi, z), is calculated assuming hypergeomet-
ric probability distribution of the z annotations among
the mi genes, and of the subset of y ⊆ z annotations
among the subset of m genes, as described [39],

P (y;m,mi, z) =

(
mi

m

)−1 m∑
x=y

(
z

x

)(
mi − z
m− x

)
. (17)
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Supplementary Figure S4. The three-dimensional
least-squares approximation of the five-dimensional ap-
proximately common HO GSVD subspace. Line-joined
graphs of the first (red), second (blue) and third (green)
most significant orthonormal vectors in the least squares
approximation of the genelets vk with k = 13, . . . , 17,
which span the common HO GSVD subspace. We
approximate this five-dimensional subspace with the
two orthonormal vectors x (green) and y (red), which fit
normalized cosine functions of two periods, and 0- and
−π/2-initial phases, i.e., normalized zero-phase cosine
and sine functions of two periods, respectively.

We find that the approximately common HO GSVD
subspace represents cell-cycle mRNA expression in the
three disparate organisms (Figure 2 and Table 1).

2.3. HO GSVD Data Reconstruction
The decoupling of the HO GSVD genelets and N sets
of arraylets, i.e., the diagonality of the matrices Σi in
Equation (1), allows simultaneous reconstruction of the
N = 3 datasets in the common HO GSVD subspace with-
out eliminating genes or arrays.

In analogy with the GSVD [7], given a common HO
GSVD subspace that is spanned by the K genelets {vk}
where k = n−K + 1, . . . , n, we reconstruct each dataset
in terms of only these genelets and the corresponding
{ui,k} arraylets,

Di = UiΣiV
T =

n∑
k=1

σi,kui,kv
T
k

→
n∑

k=n−K+1

σi,kui,kv
T
k . (18)

Note that this reconstruction is mathematically equiv-

alent to setting to zero the higher-order generalized
singular values {σi,k} in Σi for all k 6= n−K + 1, . . . , n,
and then multiplying the matrices UiΣiV

T to obtain the
reconstructed Di.

2.4. Simultaneous HO GSVD Classification
Identifying the subset of genelets and the correspond-
ing arraylets that span the approximately common HO
GSVD subspace allows simultaneous classification of the
genes and arrays of the three datasets by similarity in
their expression of these genelets or corresponding ar-
raylets, respectively, rather than by their overall expres-
sion, as described [7].

We least squares-approximate the K=5-dimensional
subspace spanned by the five genelets vk with k =
13, . . . , 17, with the two-dimensional space spanned by
two of the three orthonormal vectors x, y and z ∈ Rn

that maximize the norm
∑n

k=n−K+1(‖vTk x‖2 + ‖vTk y‖2 +

‖vTk z‖2) (Supplementary Figure S4). Since the common
HO GSVD subspace represents cell-cycle mRNA expres-
sion, the two vectors that we select to approximate the
common subspace, x and y, describe expression oscilla-
tions of two periods in the three time courses.

We plot the projection of each gene of the
dataset Di from the K-genelets subspace onto y, i.e.,
eTm
∑n

k=n−K+1(σi,kui,kv
T
k )y/am where emi

is a unit mi-
vector, along the y-axis vs. that onto x along the x-
axis, normalized by its ideal amplitude am, where the
contribution of each genelet to the overall projected ex-
pression of the gene adds up rather than cancels out,
a2m =

∑
k

∑
j |σi,kσi,j(eTmi

ui,ku
T
i,jemi

)vTk (xxT + yyT )vj |.
In this plot, the distance of each gene from the origin is
the amplitude of its normalized projection. A unit ampli-
tude indicates that the genelets add up; a zero amplitude
indicates that they cancel out. The angular distance of
each gene from the x-axis is its phase in the progression
of expression across the genes from x to y and back to
x, going through the projection of each genelet vk in this
subspace, i.e., (xxT + yyT )vk. Sorting the genes accord-
ing to these angular distances gives the angular order, or
classification, of the genes.

Similarly, we plot the projection of each array from
the K-arraylets subspace onto

∑n
k=n−K+1(ui,kv

T
k )y, i.e.,

yT
∑n

k=n−K+1(σi,kvkv
T
k )en where en is a unit n-vector,

along the y-axis vs. that onto
∑n

k=n−K+1(ui,kv
T
k )x along

the x-axis, normalized by its ideal amplitude an, where
the contribution of each arraylet to the overall projected
expression of the array adds up rather than cancels out,
a2n =

∑
k

∑
j |σi,kσi,j(eTnvkvTj en)vTk (xxT + yyT )vj |. We

sort the arrays according to their angular distances from
the x-axis.

For classification, we set to zero the arithmetic mean of
each genelet across the arrays, i.e., time, and that of each
arraylet across the genes, such that the expression of each
gene and array is centered at its time- or gene-invariant
level, respectively.
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Supplementary Figure S5. S. pombe global mRNA expression reconstructed in the five-dimensional com-
mon HO GSVD subspace with genes sorted according to their phases in the two-dimensional subspace that
approximates it (Supplementary Sections 2.3 and 2.4). (a) Expression of the sorted 3167 genes in the 17 arrays,
centered at their gene- and array-invariant levels, showing a traveling wave of expression. (b) Expression of the
sorted genes in the 17 arraylets, centered at their arraylet-invariant levels. Arraylets k = 13, . . . , 17 display the
sorting. (c) Line-joined graphs of the 13th (red), 14th (blue), 15th (green), 16th (orange) and 17th (violet) arraylets
fit one-period cosines with initial phases similar to those of the corresponding genelets (Figure 2).

With all 3167 S. pombe, 4772 S. cerevisiae and 13,068
human genes sorted, the expression variations of the
five k = 13, . . . , 17 arraylets from each organism approx-
imately fit one period cosines, with the initial phase
of each arraylet similar to that of its corresponding
genelet. The global mRNA expression of each organism,
reconstructed in the common HO GSVD subspace,
approximately fits a traveling wave, oscillating across
time and across the genes (Supplementary Figures
S5–S7).

2.5. Sequence-Independence of the Classification
Our new HO GSVD provides a comparative mathemat-
ical framework for N ≥ 2 large-scale DNA microarray
datasets from N organisms tabulated as N matrices that
does not require a one-to-one mapping between the genes
of the different organisms. The HO GSVD, therefore, can
be used to identify genes of common function across dif-

ferent organisms independently of the sequence similar-
ity among these genes, and to study, e.g., nonorthologous
gene displacement [3]. The HO GSVD can also be used
to identify homologous genes, of similar DNA or protein
sequences in one organism or across multiple organisms,
that have different cellular functions.

We examine, for example, the HO GSVD classifica-
tions of genes of significantly different cell-cycle peak
times [19] but highly conserved sequences [20, 21]. We
consider three subsets of genes, the closest S. pombe,
S. cerevisiae and human homologs of (i) the S. pombe
gene BFR1, which belongs to the evolutionarily highly
conserved ATP-binding cassette (ABC) transporter su-
perfamily [22–28], (ii) the S. cerevisiae phospholipase
B-encoding gene PLB1 [29, 30], and (iii) the S. pombe
strongly regulated S-phase cyclin-encoding gene CIG2
[31, 32] (Supplementary Table S1). We find, notably,
that these genes are correctly classified (Figure 4).
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Supplementary Figure S6. S. cerevisiae global mRNA expression reconstructed in the five-dimensional
common HO GSVD subspace with genes sorted according to their phases in the two-dimensional subspace that
approximates it. (a) Expression of the sorted 4772 genes in the 17 arrays, centered at their gene- and array-invariant
levels, showing a traveling wave of expression. (b) Expression of the sorted genes in the 17 arraylets, centered at
their arraylet-invariant levels. Arraylets k = 13, . . . , 17 display the sorting. (c) Line-joined graphs of the 13th (red),
14th (blue), 15th (green), 16th (orange) and 17th (violet) arraylets fit one-period cosines with initial phases similar
to those of the corresponding genelets (Figure 2).
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Supplementary Figure S7. Human global mRNA expression reconstructed in the five-dimensional common HO
GSVD subspace with genes sorted according to their phases in the two-dimensional subspace that approximates
it. (a) Expression of the sorted 13,068 genes in the 17 arrays, centered at their gene- and array-invariant levels,
showing a traveling wave of expression. (b) Expression of the sorted genes in the 17 arraylets, centered at their
arraylet-invariant levels. Arraylets k = 13, . . . , 17 display the sorting. (c) Line-joined graphs of the 13th (red), 14th
(blue), 15th (green), 16th (orange) and 17th (violet) arraylets fit one-period cosines with initial phases similar to
those of the corresponding genelets.
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Query Gene Gene Organism RefSeq ID Bit Score E-value

(a) Bfr1 Snq2 S. cerevisiae NP 010294.1 1149 0

S. pombe Pdr5 S. cerevisiae NP 014796.1 1103 0

NP 587932.3 Pdr18 S. cerevisiae NP 014468.1 1097 0

Pdr15 S. cerevisiae NP 010694.1 1093 0

Pdr12 S. cerevisiae NP 015267.1 1070 0

Pdr10 S. cerevisiae NP 014973.1 1029 0

(b) Plb1 Plb2 S. cerevisiae NP 013719.1 825 0

S. cerevisiae Plb3 S. cerevisiae NP 014632.1 813 0

NP 013721.1 SPAC977.09c S. pombe NP 592772.1 385 7× 10−107

SPAC1A6.03c S. pombe NP 593194.1 372 7× 10−103

SPCC1450.09c S. pombe NP 588308.1 369 8× 10−102

SPAC1786.02 S. pombe NP 594024.1 355 1× 10−97

(c) Cig2 Cdc13 S. pombe NP 595171.1 346 3× 10−95

S. pombe Clb2 S. cerevisiae NP 015444.1 248 1× 10−65

NP 593889.1 Cig1 S. pombe NP 588110.2 241 1× 10−63

Clb1 S. cerevisiae NP 011622.1 234 2× 10−61

Clb4 S. cerevisiae NP 013311.1 222 5× 10−58

Clb3 S. cerevisiae NP 010126.1 221 2× 10−57

Ccnb2 Human NP 004692.1 202 5× 10−52

Clb6 S. cerevisiae NP 011623.1 183 4× 10−46

Clb5 S. cerevisiae NP 015445.1 179 5× 10−45

Ccnb1 Human NP 114172.1 174 1× 10−43

Rem1 S. pombe NP 595798.1 160 2× 10−39

Ccna1 (isoform c) Human NP 001104516.1 159 7× 10−39

Ccna1 (isoform a) Human NP 003905.1 158 1× 10−38

Ccna1 (isoform b) Human NP 001104515.1 157 1× 10−38

Ccna2 Human NP 001228.1 145 6× 10−35

Supplementary Table S1. The closest S. pombe, S. cerevisiae and human homologs of (a) the S. pombe gene BFR1,
(b) the S. cerevisiae gene PLB1, and (c) the S. pombe gene CIG2, as determined by an NCBI BLAST [20] of the
protein sequence that corresponds to each gene against the NCBI RefSeq database [21].


