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A scheme for the “protective measuremerftPhys. Rev. A47, 4616 (1993] of the wave function of a
squeezed harmonic-oscillator state is described. This protective measurement is shown to be equivalent to a
measurement of an ensemble of states. The protective measurement, therefore, allows for a definition of the
guantum wave function on a single system. Yet, this equivalency also suggests that both measurement schemes
account for the epistemological meaning of the wave function only. The protective measurement requires a full
a priori knowledge of the measured state. The intermediate cases, in which only agmtiati information is
given, are also discussed.

PACS numbegs): 03.65.Bz, 42.50.Dv

I. INTRODUCTION estimate the uncertaintiésr variancesof these observables.
Mathematically, this is because each measurement result de-
Recently, with the technological developments that allowpends on the results of all previous measurements performed
manipulation of single quantum systems, there has been am the signal. Physically, this is due to the change of the
interest in the quantum theory of a single system. Traditionwave function of the signal each time a measurement is per-
ally, guantum mechanics describes a single system by a cofermed, in accordance with the measurement result. The
responding wave function. The quantum wave function,‘protective measurement” suggested by Aharonov, Anan-
though, is defined on an ensemble of quantum systems, idan, and Vaidman is a measurement in which the signal and
the sense that the wave function could be fully determinedhe probe are left disentangled after their interaction, and the
from the results of measurements performed on this enproceeding measurement of the probe does not affect the
sembl€1,2]. Naturally, one would ask the question: Can wesignal at all. The change in the wave function of the signal is
define the quantum wave function on a single system? Ahadeterministic, because it is independent of the measurement
ronov, Anandan, and Vaidma8,4] showed recently, that result. This change can be very small when, for example, the
the wave function of a single system could be determinednteraction of the probe and the signal is weak. The protec-
from the results of a series of “protective measurements”tive measurement requires priori knowledge of the wave
performed on the system. The measurement of a quantufanction of the signal. A series of protective measurements
system, i.e., a signal system, is composed of three stageserformed on a single quantum system will allow us to con-
preparation of a probe system, interaction of the probe witHirm this a priori knowledge.
the signal, and measuremdmthich induces collapgeof the In this Rapid Communication we describe a scheme for
probe. Usually, the probe and the signal are entangled aftehe protective measurement of a squeezed harmonic-
their interaction, and the collapse of the probe changes thescillator state. The priori knowledge of the noise distri-
wave function of the signal. It was recently shown by[bk  bution, i.e., the squeezing parameter, of the signal, is used in
that this entanglement inhibits the measurement of the wavpreparing a probe in the ground excitation, i.e., in a vacuum
function of the signal. Using the results of repeated measurestate, with the “opposite” squeezing, to avoid entanglement
ments performed on the signal, one could estimate the exf the probe and the signal as they couple linearly. The de-
pectation valuegor averagesof the various measured ob- terministic change in the wave function of the signal, a re-
servables with finite estimate errors. One cannot, howeveduction in the excitation of the signal, is “corrected for” by
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driving the signal with a classical field back to #@spriori
known initial excitation. We consider a series of “measure- O
ments without entanglement” performed on the signal, Input
where, after each measurement, the signal is driven back to Probe
its original state. In this scheme, the limits of weak and
strong measurements correspond to a series of protective Tnput , Output
measurements of a single state and a measurement of an Signal Signal o
ensemble of states, respectively. We conclude that both cases >
are equivalent methods for the measurement of the wave

e

o
function (of the single system or the ensemble of systems T 2

which provide the same information and use the same ex-

perimental arrangement. The protective measurement allows, Output

therefore, a definition of the quantum wave function on a ¥ Probe o

single system, which is equivalent to the traditional defini-
tlzgtsr:hZ? aer(]jsé?iwitt)ilc?nOc]:fstﬁsetevr\;r;sv'et‘itr;c;tt?c?nel;q:sl\é?jleonnC)/eif#gr- FIG. 1. Measurement without entanglement of a squeezed state
9 . of light: The signal and the probe, with opposite squeezing param-
measurement method can account only for the eplstemologg

| nat fth functi We also | tigate th ters, interact linearly in a beam splitter. The top and bottom insets
cal hature of ithe wave function. Ve aiso Investigate the casg,,; e changes in the signal and the probe, respectively. The

in Whic,h only.the squeezing parameter of the Sig”a' is knoWr}excitation of the signal is reduced, while the excitation of the probe
a priori. In this case the entanglement of the signal and the i,creased.

probe is avoided, but the deterministic reduction in the exci-
tation of the signal cannot be corrected for. The optimal eXrespectively. A measurement of the output probe state

perimental setup, with the optimal choice of coupling con-5 ' = therefore, gives information about the input signal state
stants, is analyzed for a series of measurements without

. . n-
entanglement performed on a single state. Using these m_ea'- To obtain information about the generalized position of
surement results it is possible to estimate the expectatiog, input signal, for examples, ;= (S,,+5")/2, one can
values of the measured observables, with the minimum pos; c.c.ire the géneralized morln'lgntunlwn of the ’output probe,

sible estimate errors being the initial uncertainties of the ob-. ~~ _ ~ % | . —. = T/——
servables. These uncertainties can be estimated as accuratBRput™ (Pout™ Poud/21 = VTh2in=V1-T8yn. The ob-

as we want, to confirm tha priori known noise distribution sefrved position,

of the signal. We conclude that no information could be ob- S10bs=—P2out/ V1-T, 3
tained about the wave function of a single system beyond the

information that is provided by a single strong measuremenis centered atS;ops=(S1;n). The uncertainty of the ob-
of this system and the information that is givarpriori to  served position is the sum of the uncertainty of the position
the measurement process. of the input signal and the measurement error,

. . T .
Il. MEASUREMENT WITHOUT ENTANGLEMENT <As§obs> =(AST;)+ ﬁ@ p%ym>. 4

The squeezed harmonic-oscillator state,r)s, is an
eigenstate of the operatef$; +ie™'s,, wheres; ands, are §imilarly, a measurement of the position of the output probe
the generalized position and momentum of the harmonic osP10ut gives information about the momentum of the input
cillator. This signal state is defined by its excitatiar}? and ~ signalsy;, . Note that, regardless of the specific observable
its squeezing parametey which determines the noise distri- that is being measured, when the coupling is highly “trans-
bution of the signal. Note that in generalis a complex Mmissive,” T~1, the measurement error is large and the mea-
number, and the squeezed state is not a minimum uncertainggrement is weak. When the coupling is highly “reflective,”
state. In our measurement scheme, the signal is bein§~0, the measurement is strong.
coupled linearly to a squeezed vacuum probbq>p, The signal-probe interaction causes a deterministic
whereq is the squeezing parameter of the prdbég. 1). change in the wave function of the signal, as can be seen
This interaction is described by the Hamiltonian from the above analysis. In general, though, the signal and
H=%x(8'p+5p"), wheres, " andp, p' are the annihila- the probe are entangled after the interaction, and a measure-
tion and creation operators of the signal and the probe, renent of the probe would induce further change in the wave
spectively. The coupling constartand the interaction time function of the signal, a stochastic change that depends on
t define the “transmission coefficient” of this interaction, € measurement result. To find the special cases in which
T=coZ(«t). In the Heisenberg picture, the time evolution of the signal and the probe are disentangled after their interac-

the signal and the probe due to their interaction is describeffon one should examine their time evolution in the Sehro
by the relations dinger picture. Using normal ordering of the unitary time

Sout= \/Tén—i V1=Tpin, (1) evolution operator{J (t) =exp(-iHt/%), it can be showri6]
A = " that when the input signal and probe are coherent states,
Pour= VTP —IVI- T8, @ B, and|y),, the output signal and probe are disentangled

A oA N N D coherent state®f different excitation
wheres;,, Pin andSyut, Pout &re the annihilation operators © 5

of the signal and the probe, before and after the interaction, U(t)|8)4 ¥)p=| VTB—iV1-Ty)d \/fy—i\/l—Tmp.
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one obtaingafter some maththat the time evolution of the

Classical N ! . . .
Driving Field squeezed signal, when driven by a classical field, is
CRE B o Ut)|[VTa.r)s=exd VT(a* f— af*)t/2]| yTa+ft,r)s.
Input | ~ ' Output (8)
Signal 1 . | Signal
; < [ > For the signal to be driven back to its original state to a
D et AN : . phase factor the fieldf and the interaction timeshould be
= AN .
CELN N o chosen to satisfy/Ta+ ft=a.
hig IV. THE PROTECTIVE MEASUREMENT OF A SINGLE
FIG. 2. Driving a squeezed state of light to its initial excitation: STATE EQUIVALENT TO A MEASUREMENT
The signal interacts with a highly excited coherent state in a highly OF AN ENSEMBLE

transmissive beam splitter. The inset shows the change in the signal. _. . . o .
Given the wave function of the signal, it is possible to
This result can be used to determine the time evolution of thgerform a series of measurements on the signal, such that

squeezed signal and the squeezed vacuum probe, writing tIE@Ch tlmteta mFgasturement |fs taken the signal is Itn |t_?hor|gt1|nal
squeezed states in the coherent states representation, nown state. FIrst, one periorms a measurement without en-

tanglement, where the knowledge about the noise distribu-
tion of the signal is used. The result of this measurement
gives some information about th@lready knowih wave
function of the signal. Then, the deterministic change in the
2 | signal is corrected for, using thee priori knowledge of the
% J (d Y/W)p< 7|O’q>pu(t)|'8>3| 7>p- initial excitation of the signal, after which the wave function
of the signal is(up to a phase factpexactly the same as it
was initially. A series of such measurements can give full
fhiformation about this wave function and confirm @upri-
. ) ) ori knowledge. The most feasible realization of this measure-
an arbitrary phase. The squeezing of the probe is, thereforgyon scheme is a measurement of the wave function of a
required to be “opposite” to the squeezing of the signal, g4 eezed state of light. For the measurement without en-
(Ap3)=exd —2 Rer)]/4=(AS5,,), (5)  tanglement, the squeezed signal could be coupled to a
;2 2 ' squeezed vacuum probe in a beam splitter, with the transmis-
<Ap2’m>=exp:2 Re(r)]/4=<Asl'm : ©) sion coefficienfl (Fig. 1). The effect of an interaction with a

In this case, the disentangled output signal and probe are %assical field could be achieved by using a highly excited
different excitations but the same noise distributions as tha c 't Statéwith a large signal-to-noise ratioand caus-

) ianal and b el ?ng it to interact with the signal in a highly transmissive
Input S|gnaAan probe, respectively, beam splitterT=1, so that the noise of the driving coherent
U(t)]a,r)¢0,—r+ig), state does not affect the squeezed sigra. 2).
) ) Now, consider the strength of these measurements. When
=\NTa,r)=iVi-Ta,~r+i¢)y. () the measurement without entanglement is strang0, the
deterministic change it causes to the signal is significant: The
I1l. DRIVING THE SIGNAL BACK excitation of the signal is reduced frojm|? to T|a|?~0. In
TO ITS INITIAL EXCITATION this case, the process of driving the signal back to its original
) excitation is equivalent to preparing a new signal state.
After a measurement without entanglement takes placepherefore, in the limit of strong measurement, the series of
the excitation of the signal is reduced, frdm|® to T|a|>.  measurements described above is, in fact, the case of prepar-
The Signal could be driven back to its initial eXCitation, if |ng and measuring an ensemb'e of identica' genera”zed
this excitation were known, using a classical fi€klg. 2.  harmonic-oscillator states. When the measurement is weak,
This interaction is described by the Hamiltonian T~1, the change in the excitation of the signal is almost
H=i#(fs"—f*3), wheref is the classical field. The unitary negligible, T|a|?~|«|2. This limit is the case of repeated
time evolution operator that corresgonds to this Hami|t0niarprotective measurements performed on a single state. Since
is a displacement operatof7], U(t)=exd(fs'—f*9t] both cases, that of a series of protective measurements per-
=D(ft). When acting on a coherent signal, the excitation offormed on a single state and that of a measurement of an

O(t)|aar>s|on>p= f (dzﬁ/ﬂ')s<ﬁ|a1r>s

This leadgafter some mathto the conclusion that the output
signal and probe are disentangled when their squeezing p
rameterg andq satisfy the relatiom= —r +i ¢, whereg¢ is

the signal is increased hiy, ensemble of states, are limits of the same physical process,
~ _ %5 ik and, indeed, the same experimental arrangement, we con-
Ut B)s=exd (B*f - BI)t2]| B+ ft)s, clude that these two cases are equivalent. And, of course, in

while its noise distribution is left unchanged. The same isthese_ two cases the quantum wave function is measured.
This equivalency in the measurement of the wave func-

true when the signal is a squeezed state. Expressing the : : -
squeezed signal in terms of coherent states, r%|on, establishes an equivalency between the two definitions

of the wave function, the traditional definition that is based

~ B 2 ~ on an ensemble of systems and the new definition suggested
U(t)|ﬁa,r>s—f (&I M) BNTar)U(D]B)s, by Aharonov, Anandan, and Vaidman that is based on a
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single system. The protective measurement requires a full n-1 n—2 n—k
priori knowledge of the measured wave function. The meaT1=——, To=—, ..., Tx=—7=...., Ty=0.
. n n—1 n—k+1
surement of an ensemble requires the knowledge of the ex- (10)

perimental parameters that produce a quantum state. Due to
the requiredh priori knowledge, both valid definitions of the The minimum possible estimate error always equals the
wave function fail to account for the physical reality of the initial uncertainty of the position of the signal,

wave function of a single quantum system. (AS?)min=(A&?), regardless of the number of measure-
ments. However, the error in the estimate of the initial un-
V. REPEATED MEASUREMENTS certainty, n
WITHOUT ENTANGLEMENT 1 ~
ot= s 2 > (S~ 51))% 11
(n=L)n" & =

In a measurement of the wave function of a single quan-

tum system, to what extent is tha priori knowledge s requced as the number of measurement increases:
needed? To answer this question, consider the case of rﬁA(crz)z):Z(Aéi 2/(n—1). Note that this is the same error
peated measurements without entanglement of the genergl. when(A%ﬁ) is estimated usingy measurement results

ized positions; of a single generalized harmonic-oscillator . . )
P 1 g€ g btained from an ensemble of identical squeezed

state. Assume that, in order to perform these measurements : . i
. s . A N armonic-oscillator states. Repeated measurements without
the noise distribution of the signal, i.6As7) and(As3), is

K but dditional inf i bout th i 1Eentanglement of a single state, therefore, give the same in-
nown, but no adaitional Information about the excitation of ¢ 5400 on the(unknowr) excitation of the signal as a
the signal, i.e.(S;) and(s,), is given. First consider the

. — single strong measurement does. Tkigown) noise distribu-
results of two consecutive measuremesis,ands; ,. From 9 9

h Iti _ o tion of the signal can be determined with increasing accu-
Eq.(3), each resultis, on averag® ) =(S12) =(S1)- From a0y "oq'the number of measurements increases. We conclude
Egs.(4), (6), and(7), the errors associated with these result

L N ~> - Sthat in order to obtain information about the wave function,
are (Asi)=(As)/(1-Ty) and (ASi)=(AS))/Ti/  \which a single strong measurement cannot give, this infor-
(1-T;). Define the estimate ofS;) to be $,=(S11  mation is required to be knowa priori to the measurement
+51)/2, where(s;)=(s;). The measurement results,;  process.

ands, ,, are independent of each other, since the signal and

probe are disentangled after their interaction, and the esti- VI. CONCLUSIONS

mate error is(As 2)=((AS 2 )+(AS 2,))/4. This error is _ .

minimized when the transmission coefficients are chosen We have described a scheme for the protective measure-
such thafT,; = 1/2 andT,=0. In this case, the estimate error Ment of a squeezed harmonic-oscillator state. Using this

equals the initial uncertainty in the generalized position ofScheme, we have shown that the protective measurement of a
the signal{As 2);,=(A&2). To estimate this initial uncer- Single system is equivalent to a measurement of an ensemble

define°f systems. Therefore, the protective measurement allows for
a definition of the quantum wave function on a single sys-

tem. Yet, the protective measurement of a single system ac-
counts only for the epistemological nature of the wave func-

}ion of the single system, and does not add to it physical

reality. Analyzing the case in which only partial priori

tainty using the measurement results,
0?= (8,1~ S1.9%4, where, for the above choice af and

T,, (0?)=(AS3). The error in the uncertainty estimate is
(A(0?)?)=2(AS?), where we used the fact that the proba-
blity densities of the generalized position and momentum o

a gﬁ:}irglr',ﬁfsgagﬁngz c;secr:”ea:g:irzthatﬁir?riaiiresrﬂzgf.re- information about the wave f_unction of the system is avail-

sults by way of mathematical induction. In this case theable.’ we haye shown that without aaypriori knowledge, :

estimate of the generalized position of tHe signal is défine he_ information _that can be extra_cted frqm a smgle system Is
mited to the information obtained with a single strong

as 1.n measurement.
n

> Sy ©
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