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Motivation (I)
Technological advances allow control of single
quantum systems:

Squeezing of single wavepackets of light
Trapping of single atoms, ions or DNA molecules

What is the meaning
of the quantum state
(or wavefunction)?

Smithey, Beck,
Raymer & Faridani,
PRL 70, 1244 (1993).
Vogel & Risken,
PRA 40, 2847 (1989).

Aharonov, Anandan & Vaidman, PRA 47, 4616 (1993):

It may be possible to determine the unknown quantum
wavefunction of a single system, and give the
wavefunction a physical meaning, in addition to its
statistical meaning.

Imamoglu, PRA Rapid Communication 47, R4577 (1993);
Royer, PRL 73, 913 (1994) [Erratum in PRL 74, 1040 (1995)].

Huttner, private communication (1995).



Motivation (II)
State-of-the-art precision measurements are based on
monitoring the time evolution of a single physical
system:

Gravitational wave detection
Scanning microscopy (AFMs)

Josephson junction circuits (SQUIDs)

What is the fundamental limit to the determination of
the time evolution of a single system?
What is the fundamental quantum limit to the detection
of a classical signal via the monitoring of a single
system?

Hollenhorst, PRD 19, 1669 (1979);
Braginsky, Vorontsov & Thorne, Science 209, 541 (1980);

Caves, Thorne, Drever, Sandberg & Zimmermann, RMP 52, 341 (1980);
Yuen, PRL 51, 719 (1983):

There may be no such fundamental limit.



“ ... phenomena and their observation ...
designated as complementary ...”

Bohr, Nature 121, 580 (1928).

The Projection Postulate



Generalized
Quantum Measurement

The generalized quantum measurement is
     described by the generalized projection operator

   Y (q,q1) = p〈q1|U|φ〉p  .
Unitary signal-probe interaction    U →

deterministic change in   ρ0  .
Projection in the measurement of the probe    Y →

reduction, i.e., stochastic change in   ρ0  .



Outline



Impossibility of Determining
 the Quantum Wavefunction

of a Single System
Alter & Yamamoto, PRL 74, 4106 (1995);  doi: 10.1103/PhysRevLett.74.4106

Model: A series of QND measurements of the photon-
number  n

 
is performed on a single wavepacket

of light, which is initially in the pure state   ρ0  
.

Goal: Use the statistics of the measurement results to
estimate the initial probability density,

   P0(n) = 〈n|ρ0|n〉
initial expectation value    〈n0〉   

and initial uncertainty    〈Δn0
2〉

 
.



A Series of QND Measurements of
a Single System

In each measurement, the signal photon-number is
estimated from the change in the probe phase, which
equals the second quadrature-amplitude of the probe
approximately
with the estimation error



Saturated Quantum Brownian Motion and
Continuous Wavefunction Collapse

In terms of the changes induced in the wavefunction, a series of imprecise
measurements is equivalent to a single precise measurement.
Alter & Yamamoto. In: Greenberger & Zeilinger, eds., Fundamental Problems in Quantum Theory

(Annals of the New York Academy of Sciences vol. 755, New York Academy of Sciences)
pp. 103–109 (1995); doi: 10.1111/j.1749-6632.1995.tb38960.x
Alter & Yamamoto, Fortschritte der Physik 46, 817 (1998);

doi: 10.1002/(SICI)1521-3978(199811)46:6/8<817::AID-PROP817>3.0.CO;2-Y



Statistics of the
Measurement Results

Each measurement result,   n1  or   n2  
, estimates the initial

expectation value

and second moment

but not the initial uncertainty

If    n1  and   n2  
were independent results, obtained from

two different quantum systems, then

and the initial uncertainty can be estimated.

In our case    n2   depends on    n1 ,

and the initial uncertainty cannot be estimated.



Conclusions
Alter & Yamamoto. In: Fujikawa & Ono, eds., Quantum Coherence and
Decoherence (Foundations of Quantum Mechanics in the Light of New

Technology vol. 5, Elsevier Science) pp. 31–34 (1996).
The unknown wavefunction of a single system cannot
be determined from the results of a series of quantum
measurements, due to the reduction which is induced by
the measurement process.

The quantum wavefunction
has only an epistemological
meaning:
Æ The quantum uncertainty

   
〈Δq0

2〉 = 〈q0
2〉 – 〈q0〉

2

is not an observable.
Æ Quantum mechanics is not an ergodic theory.
Æ Information in quantum communication channels

cannot be coded on the uncertainties of the quantum
signals.



Measurements without
Entanglement of a Squeezed

Wavepacket of Light
Alter & Yamamoto, PRA Rapid Communications 53, R2911 (1996);

doi: 10.1103/PhysRevA.53.R2911

Conclusions
Measurements without entanglement avoid the
reduction and induce only a deterministic change in the
quantum state of the measured system by utilizing some
a-priori information about this state.

This is the only additional information, which is present
in the statistics of the results of a series of
measurements of the single system.



Adiabatic Position Measurement
of a Harmonic Oscillator

Comment by Aharonov & Vaidman, PRA 56, 1055 (1997).

α1

α2

   
U(T) |0〉 s |β 1〉p   ≈ |0〉 s |β 1〉p



Adiabatic Position Measurement
of a Harmonic Oscillator
Reply by Alter & Yamamoto, PRA 56, 1057 (1997);

doi: 10.1103/PhysRevA.56.1057

α1

α2

   
U(T) |0〉 s |β 1〉p

   = eiφ(β 1,T) |e– iωT δ(β 1,T)〉 s |β 1〉p  ≈ |0〉 s |β 1〉p

Conclusions:
An adiabatic interaction
leaves the signal and the
probe only approximately
disentangled.  The signal
is not protected from
reduction.



Limit to Monitoring the Time
Evolution of a Single System

Alter & Yamamoto, PRA Rapid Communications 55, R2499 (1997);
doi: 10.1103/PhysRevA.55.R2499

Alter & Yamamoto. In: De Martini, Denardo & Shih, eds.,
Quantum Interferometry (Wiley-VCH) pp. 539–544 (1996).

Model: A series of QND measurements of the photon-
number    of a two-level atom in a single-
photon mode cavity during its time evolution.

n

Probe

Kerr
Medium

Estimation Error
〈Δn2〉 = 〈Δn0

2〉 + Δm
2

Goal: Use the measurement results to estimate the
Rabi oscillations of the energy in the cavity.

Cavity Photon-Number Initial State

|ψ(0)〉 = e–iπ/122 |e〉 a |0〉p
± eiπ/12

2 |g〉 a |1〉 p
|ψ(0)〉 = |e〉 a |0〉p

 n



Quantum Zeno Effect of a Single System
Imprecise Measurements   Δm = 2  Precise Measurements   Δm = 0.1

Ensemble  →  unitary time evolution  →  initial quantum state;
Single system  →  no initial quantum state  →  no time evolution.



Schrödinger and Heisenberg Pictures
Quantum Zeno effect of a single system – Schrödinger picture: a series of n
measurements of the observable   of a single system during its time
evolution.

PS(q1, ... , qn) =
Trs [Yn Un ... Y1 U1ρ 0U 1

+Y 1
+ ... Un

+ Y n
+] =

Trs[Y (qn,qn) ... Y (q1,q1) ρ0 Y
+(q1,q1) ... Y

+(qn,qn)] =
PH(q 1, ... , qn)

Impossibility of determining the quantum wavefunction of a single system –
Heisenberg picture: a series of n measurements of time-varying observables
of a single system, with no time evolution between successive
measurements.

 q



Conclusions
The quantum Zeno effect of
a single system and the
impossibility of determining
the wavefunction of a single
system are equivalent.

In the Heisenberg picture,
the series of measurement
results cannot determine the
initial quantum state of the
s y s t e m ,  and in the
Schrödinger picture, these
results cannot determine the
unitary time evolution of the
single system.

The quantum Zeno effect is more than a dephasing effect: It is a quantum
measurement effect.

The monitoring of the time evolution of a single system is limited by the
impossibility of determining the quantum state of this system.



Limit to Precision Measurements
with a Single Quantum System

Alter & Yamamoto, PLA 263, 226 (1999);
doi: 10.1016/S0375-9601(99)00743-4

Model: Measurements of a quantum harmonic oscillator
(free mass) driven by a classical force:

Gravitational wave detection
Scanning microscopy (AFMs)

Josephson junction circuits (SQUIDs)
Goal: Use the measurement results to estimate the

magnitude and phase of the force.



Monitoring the Momentum
of a Driven Free Mass

   
p(t) – p(0) = dtʹ′

0

t
F(tʹ′)

Common assumption of independent errors in the
estimates of   p(0)  and   p(t) :

= 〈Δp 2(0)〉 +〈Δp 2(t)〉 + Δm
2Δm

2

Æ Force detection is best when    〈Δp2(0)〉 = 0 ;
Æ Interest in initial quantum state preparation.

However, force detection is limited by the error in the
estimate of   p(t) – p(0)  that is independent of    〈Δp2(0)〉 :

   〈Δ[p(t) – p(0)]2〉 =
   = 〈Δp2(t)〉 + 〈Δp2(0)〉 – 〈{Δp(t),Δp(0)}〉
   = 〈Δp2(t)〉 – 〈Δp 2(0)〉 = 0

This is because of the correlation between   p(0)  and   p(t) ,
which is ignored by the common assumption.

Æ Force detection is independent of the initial quantum
state of the driven mass (or oscillator).

This agrees with the impossibility of estimating    〈Δp2(0)〉
of a single mass in an unknown state.



Standard Quantum Limit
in Position Monitoring?

   
x(t) – x(0) = p(0) t/m + dtʹ′

0

t
dtʹ′ʹ′

0

tʹ′
F(tʹ′ʹ′)/m

Braginsky, JETP 26, 831 (1968);  Caves, Thorne, Drever, Sandberg &
Zimmermann, RMP 52, 341 (1980);  Yuen, PRL 51, 719 (1983).

Contractive state measurements overcome the standard
quantum limit  when  the state  of  the  mass  is  reset  to a
known contractive state with negative   x(0)  and   p(0)
correlation after each position measurement:

→ 0+ 〈{Δx(0),Δp(0)}〉 t/m
〈Δx2(t)〉 = 〈Δx2(0)〉 + 〈Δp2(0)〉 t2/m2



Standard Quantum Limit in
Position Monitoring!
Alter & Yamamoto, PLA 263, 226 (1999);

doi: 10.1016/S0375-9601(99)00743-4
Alter & Yamamoto. In: Namiki, Ohba, Maeda & Aizawa, eds.,

Quantum Physics, Chaos Theory and Cosmology
(American Institute of Physics) pp. 151–172 (1996).

   
x(t) – x(0) = p(0) t/m + dtʹ′

0

t
dtʹ′ʹ′

0

tʹ′
F(tʹ′ʹ′)/m

However, force detection is limited by the error in the
estimate of the displacement that depends on    〈Δp2(0)〉

This is because of the correlation between    x(0)   and
that was neglected in all previous analyses.

Æ In exact position monitoring of a driven mass (or
oscillator), all information about the driving force is
lost.

Æ From the trade-off between     〈Δp2(0)〉   and         force
detection is limited by 
and that is, in fact, the standard quantum limit.

Caves & Milburn, PRA 36, 5543 (1987);  Mabuchi, PRA 58, 123 (1998).

Δm
2

t/m≥ hΔm
2+〈Δ[x(t) – x(0)]2〉



This agrees with the impossibility of determining both
unknown   x(0)  and   p(0)  of a single mass (or oscillator).

Uncertainty Principle and
Completeness of Quantum Theory

Alter & Yamamoto, Quantum Measurement of a Single System
(Wiley-Interscience) 136 pp. (2001);  doi: 10.1002/9783527617128

〈Δp2(t)〉〈Δx2(t)〉 2/≥ h 4
What are the limits to the information that can be
obtained in the quantum measurement of a single system?

x(t) – x(0) = p(0) t/m
Heisenberg, Physical Principles of the Quantum Theory (1930);

Schrödinger, Interpretation of Quantum Mechanics (1955);
Einstein, Tolman & Podolsky, PR 37, 780 (1931).

Applying the previous analysis to this historic debate,
calculating the estimate errors taking into account the
correlations between   x(0) ,         and   p(0) ,   p(t)  gives:

〈Δx2(0)〉〈Δ[x(t) – ]2〉 =p(0) t/m

Δ[x(t) – x(0)]2〉 = 〈Δp2(0)〉 t2/m2

Æ The determination of both position and momentum of
a single quantum system at any given time is always
limited by the uncertainty principle, even when this
time belongs to the past.

Æ To this end, quantum mechanics is complete.



Monitoring the Slowly-Varying
Quadrature Amplitudes

of a Driven Harmonic Oscillator
   

a1(t) – a1(0) = δ 1(t) = dtʹ′
0

t
sin(ωtʹ′) f (tʹ′)

   
a2(t) – a2(0) = δ 2(t) = dtʹ′

0

t
cos(ωtʹ′) f (tʹ′)

Force detection is limited only by the uncertainties in the
initial and final simultaneous measurements of the two
conjugate quadrature amplitudes:

〈Δa1
2〉 〈Δa2

2〉 ≥ 1/16

2hω (〈Δa 1
2〉 + 〈Δa2

2〉) ≥ hω

Æ This limit requires an exchange of at least one
quantum of energy between the force and the oscillator
per sampling time interval.



Monitoring the Number
of Quanta of Energy

   n(t) – n(0) = |δ(t)|2 +    2[δ 1(t) a1(0) + δ 2(t) a2(0)]
Hollenhorst, PRD 19, 1669 (1979);

Braginsky, Vorontsov & Thorne, Science 209, 547 (1980);
Caves, Thorne, Drever, Sandberg & Zimmermann, RMP 52, 341 (1980):

When the oscillator is initially in a number eigenstate   |k〉 ,
the sensitivity of force detection increases with    k .

However, regardless of the initial oscillator state, the
uncertainty in the number change and the average
number change satisfy

〈Δ[n(t) – n(0)]2〉 ≥ 〈n(t) – n(0)〉 = |δ(t)|2

where the minimum uncertainty is achieved when the
oscillator is initially in the vacuum state   |0〉 .

Æ This limit requires an exchange of at least one quantum
of energy between the force and the oscillator per
sampling time interval.

The minimum uncertainty in the number change is due to
arbitrary phase between the force and the oscillator,
which is also at the root of the quantum Zeno effect of a
single oscillator.



Conclusions
There is a fundamental quantum limit to external force
detection with a single harmonic oscillator.

This limit is equivalent to the impossibility of determining
the quantum state of a single system, and to the quantum
Zeno effect of a single system.

This limit requires an exchange of at least one quantum of
energy between the external force and the harmonic
oscillator per sampling time interval (and vanishes for the
free mass).

Force detection beyond this limit is impossible, no matter
what quantum state the oscillator is prepared in, what
observables of the oscillator are being monitored or what
measurement schemes are being employed.

This limit can be achieved via simultaneous monitoring of
the time evolution of the two slowly-varying quadrature
amplitudes, where the quantum uncertainties associated
with the initial oscillator state do not limit the detection of
both magnitude and phase.

Determination of the magnitude at this limit can be
achieved via monitoring the number of quanta of energy
of the oscillator, using either QND or destructive number
measurements, where the oscillator state is reset to the
vacuum state after each measurement.
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